izpis_h1_title_alt

Routhov izrek : diplomsko delo
ID Remic, Mihaela (Author), ID Cencelj, Matija (Mentor) More about this mentor... This link opens in a new window, ID Starčič, Tadej (Comentor)

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/3626/ This link opens in a new window

Abstract
V elementarni geometriji je eden najpomembnejših izrekov o geometriji trikotnikov Cevov izrek. Cevov izrek podaja kriterij, kdaj množica treh Cevovih premic, po ena skozi vsako oglišče in točko nasprotiležne stranice danega trikotnika, tvori šop. Routhov izrek je neke vrste posplošitev Cevovega izreka, saj v primeru, da dane Cevove premice ne tvorijo šopa, poda razmerje ploščin danega trikotnika in trikotnika, ki ga dobimo s presečišči Cevovih premic. V diplomskem delu predstavimo in dokažemo Routhov izrek s pomočjo Menelajevega izreka. V zadnjem delu diplomskega dela pa predstavimo še posplošitev Routhovega izreka za primer, ko imamo šest Cevovih premic, po en par premic skozi vsako oglišče danega trikotnika.

Language:Slovenian
Keywords:trikotnik, Cevov izrek, ploščina trikotnika
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Publisher:[M. Remic]
Year:2016
Number of pages:VIII, [60] str.
PID:20.500.12556/RUL-84659 This link opens in a new window
UDC:514(043.2)
COBISS.SI-ID:11120457 This link opens in a new window
Publication date in RUL:09.09.2016
Views:1714
Downloads:289
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Routh's theorem
Abstract:
The Ceva's theorem is one of the most important theorems in elementary geometry. This theorem provides criteria under which a set of three Ceva's line segments, one through each vertex and a point of opposite lying side of the given triangle are concurrent. The Routh's theorem is a kind of generalization of the Ceva's theorem. When the given Ceva's lines are not concurrent, the Routh's theorem gives the ratio between the areas of the given triangle and the triangle, which we get with the intersection of the Ceva's lines. In this work we present and prove the Routh's theorem with the help of the Menelauses' theorem. In the last part of this work we present the generalization of the Routh's theorem to the case when six Ceva's line segments are given, one pair through each vertex of the given triangle.

Keywords:triangle

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back