izpis_h1_title_alt

Pristopi strojnega učenja za analizo igre League of Legends
ID Janežič, Simon (Author), ID Zupan, Blaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (4,30 MB)
MD5: 3D40EE2D5DC8C3C4410A8D07C0F81869
PID: 20.500.12556/rul/e1cfca31-2715-4f3c-803e-891a972ae3ab

Abstract
V diplomskem delu želimo z uporabo strojnega učenja napovedovati izide tekem igre League of Legends. Igra je večigralska in združuje elemente strateških in akcijskih iger. Zaradi popularnosti igre so večkrat na leto po vsem svetu organizirana tekmovanja, kjer se profesionalne ekipe borijo za denarne nagrade. Napovedovati poizkušamo tako profesionalne kot neprofesionalne tekme. Izziv je že pridobitev podatkov za oba tipa tekem. Podatke za neprofesionalne tekme pridobimo s pomočjo uradne spletne knjižnice, za profesionalne pa s filtriranjem vsebin spletnih strani, ki vsebujejo rezultate tekem. Raziskavo pričnemo s krajšo analizo, kjer primerjamo statistike igralcev različnih rangov ter najdemo zanimive ugotovitve, ki bi jih igralci nižjih rangov lahko uporabili za izboljšanje. Na podatkih nato uporabimo in testiramo algoritme za klasifikacijo. Pri neprofesionalnih tekmah dobimo podobne rezultate kot obstoječ članek na to temo, ki je bil objavljen v Journal of Machine Learning Research. Primerjamo tudi rezultate klasifikatorjev obeh tipov tekem ter ugotovimo, da so profesionalne tekme bolj napovedljive.

Language:Slovenian
Keywords:strojno učenje, podatkovno rudarjenje, League of Legends, napoved izida igre
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-84442 This link opens in a new window
Publication date in RUL:23.08.2016
Views:1793
Downloads:426
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Machine Learning Approaches for analysis of League of Legends
Abstract:
Our goal is to use machine learning for predicting winners of League of Legends matches. League of Legends is a multiplayer game that combines elements from strategic and action games. Every year, multiple professional League of Legends competitions are being held acros the globe. We try to predict both professional and non-professional matches. Getting data for both types of matches is already a challenge. For non-professional matches official application programming interface is used, while data for professional matches is gathered using web scraping. We begin our research by using the collected data for initial analysis, where we compare player statistics from different ranks. We find some interesting differences that lower-ranked players could use to improve their game without huge amount of effort. After that, we use standard machine learning approaches to predict match winners. Classificators for non-professional matches yield similar results to a recently published study. We also compare the results for both types of matches and find that it is easier to predict the outcomes of professional matches.

Keywords:machine learning, data mining, League of Legends, game outcome prediction

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back