izpis_h1_title_alt

Prepoznavanje starosti oseb s slik obrazov z uporabo konvolucijskih nevronskih mrež
ID Konda, Jaka (Author), ID Peer, Peter (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (10,38 MB)
MD5: 2238D8CEC5F0F2B134FCFB505ECCFFAF
PID: 20.500.12556/rul/2b100044-bee6-43e0-94e1-bd2175c0c30c

Abstract
Diplomsko delo pokaže celoten postopek razvoja rešitve problema prepoznavanja starosti oseb s slik. Začnemo s teoretičnimi osnovami o konvolucijskih nevronskih mrežah, s pomočjo katerih smo se tudi lotili problema. V praktičnem delu sledi priprava podatkov in učenje sestavljenega modela nevronske mreže, kjer smo izbrali znano VGG arhitekturo. Naučen model preizkusimo še na tekmovanju LAP, da dobimo rezultate, ki jih nato primerjamo z rešitvami ostalih ekip. Naši rezultati so se kljub nekoliko preprostejšemu pristopu izkazali za precej vzpodbudne, saj smo dosegli manjšo napako kot človek ter se uvrstili na 4. mesto med 11 ekipami.

Language:Slovenian
Keywords:računalniški vid, strojno učenje, nevronska mreža, konvolucijska nevronska mreža, klasifikacija, zaznavanje obrazov, starost, klasifikacija starosti, določanje starosti
Work type:Bachelor thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-84352 This link opens in a new window
Publication date in RUL:16.08.2016
Views:3054
Downloads:516
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Recognising people’s age from face images with convolutional neural networks
Abstract:
The diploma thesis presents the entire process of developing a solution for recognising person’s age in the image. We start with the theoretical basics of convolutional neural networks that we used to address the problem. In the practical part we start with the preparation of used datasets and continue with learning of our neural network with the chosen widely known VGG architecture. Learned model is tested on the LAP competition dataset in order to obtain results, which are comparable with the solutions of other teams. Despite somewhat simpler approach our results proved to be quite encouraging. We surpassed human performance and ranked 4th among 11 teams.

Keywords:computer vision, machine learning, neural networks, convolutional neural networks, classification, face detection, age, age classification, age recognition

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back