Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Detekcija uhljev s konvolucijskimi nevronskimi mrežami
ID
GABRIEL, LUKA LAN
(
Author
),
ID
Peer, Peter
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(4,45 MB)
MD5: A04A70326C2EAADE1CEE75421632FC9A
PID:
20.500.12556/rul/eb513c13-b7d8-476b-ac68-22866f0913dc
Image galllery
Abstract
Zaznavanje objektov na slikah je še zmeraj zahteven problem na področju računalniškega vida. Zaznavanje uhljev je v zadnjih letih postala popularna aplikacija zaznavanja objektov, z vedno večjim zanimanjem za identifikacijo ljudi glede na biometrijo uhlja. Kolikor vemo, se je problem zaznavanja uhljev do zdaj reševal s kombinacijami zaznavanja kože, zaznavanja robov, histogramov in algoritmi ujemanja predloge. V tem delu predstavimo metodo za detekcijo uhljev brez ujemanja predloge, z uporabo konvolucijske nevronske mreže, ki opravlja segmentacijo. S to metodo, ki je invariantna na kot, pod katerim je slika zajeta, obliko uhlja, barvo kože, osvetljitev, delno prekrivanje in dodatke na uhljih, smo uspeli natančno zaznati območje slike, kjer se uhelj nahaja. Nadalje, čas, potreben za zaznavo, se je zelo izboljšal v primerjavi z ostalimi metodami za reševanje enakega problema. Predvidevamo, da bo naša metoda uporabljena v orodju Annotated Web Ears Toolbox.
Language:
English
Keywords:
računalniški vid
,
segmentacija
,
konvolucijske nevronske mreže
,
detekcija uhljev
Work type:
Bachelor thesis/paper
Organization:
FRI - Faculty of Computer and Information Science
Year:
2016
PID:
20.500.12556/RUL-84351
Publication date in RUL:
16.08.2016
Views:
3592
Downloads:
376
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
GABRIEL, LUKA LAN, 2016,
Detekcija uhljev s konvolucijskimi nevronskimi mrežami
[online]. Bachelor’s thesis. [Accessed 1 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=84351
Copy citation
Share:
Secondary language
Language:
Slovenian
Title:
Ear detection with convolutional neural networks
Abstract:
Object detection is still considered a difficult task in the field of computer vision. Specifically, earlobe detection has become a popular application as the interest in human identification using earlobe biometry has increased. So far earlobe detection problem has been solved using a combination of skin detection, edge detection, segmentation by fusion of histogram-based k-means, and template matching algorithms. In this work we present a method of earlobe detection without template matching by using a convolutional neural network, performing image segmentation. With this method, which is invariant to angle at which the photo was taken, earlobe shape, skin color, illumination, occlusions, and earlobe accessories, we were able to accurately detect the area of the image, where an earlobe is present. Moreover, detection time was significantly improved when compared to other methods for solving the same task. We expect our method to be used in Annotated Web Ears Toolbox.
Keywords:
computer vision
,
segmentation
,
convolutional neural networks
,
earlobe detection
Similar documents
Similar works from RUL:
effect of strain rate on mechanical properties of PK11SP steel microalloyed with titanium
ǂthe ǂinfluence of deformation degree on mechanical properties of cold drawn PT929 steel
influence of scrap revert type on mechanical properties of AlSi10Mg(Fe) alloy
effect of recycled material on mechanical properties of polypropylene
influence of cooling rate and nucleation potential on mechanical properties of AlSi9Cu3
Similar works from other Slovenian collections:
Vpliv gostote na mehanske lastnosti jekla, proizvedenega s prškasto metalurgijo
Tensile test models for low-carbon microalloyed steels with high niobium contents
ǂThe ǂInfluence of mechanical properties of steel pressure vessels on crack appearance at tensile loading
Effect of fiber-layer positions on mechanical properties of carbon fiber reinforced materials manufactured by fused deposition modeling
Mechanical properties of a welded joint welded by a highly productive arc process
Back