Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Učenje globokih nevronskih mrež za problem stereo vida
ID
ŽBONTAR, JURE
(
Author
),
ID
LeCun, Yann
(
Mentor
)
More about this mentor...
,
ID
Demšar, Janez
(
Comentor
)
PDF - Presentation file,
Download
(12,73 MB)
MD5: 947F09F9BDAE2F384620CF0F639B086F
PID:
20.500.12556/rul/8a4ee846-bde4-4bf5-865f-cef014e9a6d2
Image galllery
Abstract
V pričujoči doktorski disertaciji predstavimo metodo za izračun cene ujemanja za problem stereo vida. Stereo podatkovne množice, na primer KITTI in Middlebury, so v zadnjih nekaj letih postale dovolj velike, da se lahko problema lotimo z metodami, ki temeljijo na učenju. Naš pristop temelji na uporabi globoke konvolucijske nevronske mreže in algoritma za nadzorovano strojno učenje. Učno množico zgradimo iz javno dostopnih stereo podatkovnih množic. Učni primer sestoji iz para slikovnih zaplat in pripada enemu izmed dveh razredov: pozitivnemu, ko sta slikovni zaplati v korespondenci in negativnemu, ko nista. Predstavljeni sta dve arhitekturi konvolucijskih nevronskih mrež za učenje podobnosti. Prva arhitektura je hitrejša od druge, vendar je izračunana globinska slika v povprečju manj natančna. V obeh primerih je vhod v nevronsko mrežo par slikovnih zaplat, izhod pa mera podobnosti med njima. Obe arhitekturi vsebujeta konvolucijski nevronski mreži, ki slikovni zaplati predstavita z vektorjem značilk. Podobnost med slikovnima zaplatama je izračunana na vektorju značilk, namesto na svetlostih posameznih slikovnih elementov. Prva arhitektura vektorja značilk primerja s kosinusno podobnostjo, medtem ko druga arhitektura vektorja primerja z naučeno večnivojsko nevronsko mrežo. Razvito metodo primerjamo z uveljavljenimi metodami na treh podatkovnih množicah -- KITTI 2012, KITTI 2015 in Middlebury -- in ugotovimo, da je naša metoda najnatančnejša na vse treh podatkovnih množicah.
Language:
English
Keywords:
stereo
,
cena ujemanja
,
učenje podobnosti
,
nadzorovano učenje
,
konvolucijska nevronska mreža
Work type:
Dissertation
Organization:
FRI - Faculty of Computer and Information Science
Year:
2016
PID:
20.500.12556/RUL-84276
COBISS.SI-ID:
1537065923
Publication date in RUL:
27.07.2016
Views:
3532
Downloads:
1093
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ŽBONTAR, JURE, 2016,
Učenje globokih nevronskih mrež za problem stereo vida
[online]. Doctoral dissertation. [Accessed 2 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=84276
Copy citation
Share:
Secondary language
Language:
Slovenian
Title:
Training deep neural networks for stereo vision
Abstract:
We present a method for extracting depth information from a rectified image pair. Our approach focuses on the first stage of many stereo algorithms: the matching cost computation. We approach the problem by learning a similarity measure on small image patches using a convolutional neural network. Training is carried out in a supervised manner by constructing a binary classification data set with examples of similar and dissimilar pairs of patches. We examine two network architectures for learning a similarity measure on image patches. The first architecture is faster than the second, but produces disparity maps that are slightly less accurate. In both cases, the input to the network is a pair of small image patches and the output is a measure of similarity between them. Both architectures contain a trainable feature extractor that represents each image patch with a feature vector. The similarity between patches is measured on the feature vectors instead of the raw image intensity values. The fast architecture uses a fixed similarity measure to compare the two feature vectors, while the accurate architecture attempts to learn a good similarity measure on feature vectors. The output of the convolutional neural network is used to initialize the stereo matching cost. A series of post-processing steps follow: cross-based cost aggregation, semiglobal matching, a left-right consistency check, subpixel enhancement, a median filter, and a bilateral filter. We evaluate our method on the KITTI 2012, KITTI 2015, and Middlebury stereo data sets and show that it outperforms other approaches on all three data sets.
Keywords:
stereo
,
matching cost
,
similarity learning
,
supervised learning
,
convolutional neural networks
Similar documents
Similar works from RUL:
Vpliv izražanja receptorja za inzulinu podoben rastni dejavnik 1 (IGF1R) na preživetje pri razsejanem nedrobnoceličnem raku pljuč
Metastatic EMT phenotype is governed by microRNA-200-mediated competing endogenous RNA networks
Role of cysteine cathepsins B and X and their inhibitors in epithelial-mesenchymal transition of tumor cells
Isolation and characterization of cancer stem cells from breast cancer cell lines and evaluation of their cathepsin B and X expressions
Določanje prisotnosti krožečih tumorskih celic v periferni krvi bolnikov po RO-resekciji raka debelega črevesa in danke
Similar works from other Slovenian collections:
Trans-esophageal endobronchial ultrasound-guided needle aspiration (EUS-B-NA)
Multicenter evaluation of the fully automated PCR-based Idylla EGFR Mutation Assay on formalin-fixed, paraffin-embedded Q1 tissue of human lung cancer
Non-small cell lung cancer in countries of Central and Southeastern Europe
Epidermal growth factor receptor mutations and treatment of non-small-cell lung cancer
Novosti v zdravljenju pljučnega raka ASCO, Chicago, 1.-5. junij 2012
Back