izpis_h1_title_alt

Razpoznavanje prevoznih sredstev na osnovi uporabe senzorjev pametnih mobilnih naprav
ID PETELN, KRISTINA (Author), ID Rupnik, Rok (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (10,67 MB)
MD5: C821588D497BAAE21B99A6EE1901E9A3
PID: 20.500.12556/rul/b33798dd-0b43-424e-968e-8aa3eded12e5

Abstract
Namen diplomskega dela je razvoj mobilne aplikacije za sprotno razločevanje med hojo, kolesarjenjem, vožnjo z avtomobilom, vožnjo z mestnim avtobusom in mirovanjem, kar omogoča uporabniku prilagojeno analizo trajanja poti z različnimi prevoznimi sredstvi. Za dosego cilja so bili zbrani podatki iz senzorjev, ki jih vsebujejo sodobne mobilne naprave (pospeškomer in GPS), iz katerih so bili s pomočjo logistične regresije naučeni modeli za klasifikacijo. Za računanje parametrov klasifikacije sta bila z različnimi argumenti uporabljena Newtonova metoda in gradientni spust. Modeli so bili uporabljeni v Android aplikaciji, ki sproti razločuje med prevoznimi sredstvi in poti shranjuje za kasnejšo analizo. Na voljo je tudi možnost naknadne korekcije napačno klasificiranih osamelcev in razločevanja med avtomobilom in avtobusom glede na postanke na poti.

Language:Slovenian
Keywords:logistična regresija, Newtonova metoda, gradientni spust, Android aplikacija
Work type:Undergraduate thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-84242 This link opens in a new window
Publication date in RUL:21.07.2016
Views:1515
Downloads:367
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The recognition of types of vehicles based on using sensors of smart mobile devices
Abstract:
The purpose of this thesis is the development of a mobile application that can distinguish between walking, biking, driving by car, driving by bus and standing still, which enables the user to perform a personal analysis of their travel duration according to different means of transport. The objective was achieved by gathering accelerometer and GPS data from sensors included in modern mobile devices and using it to train classification models with logistic regression. The classification parameters were calculated using Newton's method and gradient descent with various arguments. The models were utilized in an Android application, which distinguishes between transportation modes in real time and saves the routes for later analysis. The application also provides options for subsequent correction of wrongly classified outliers and further distinction between bus and car based on stopovers.

Keywords:logistic regression, Newton's method, gradient descent, Android application

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back