Details

Potovalne navade kitajskih turistov : zakaj in kam v Evropo
ID Pengov Bitenc, Urška (Author), ID Knežević Cvelbar, Ljubica (Mentor) More about this mentor... This link opens in a new window, ID Rašković, Matevž (Comentor)

URLURL - Presentation file, Visit http://www.cek.ef.uni-lj.si/magister/pengov_bitenc2018-B.pdf This link opens in a new window

Language:Slovenian
Keywords:Kitajska, Evropa, turizem, potovanja, vedenje potrošnikov, kultura, medkulturno delovanje, raziskave
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:EF - School of Economics and Business
Place of publishing:Ljubljana
Publisher:[U. Pengov Bitenc]
Year:2016
Number of pages:II, 65, 37 str.
PID:20.500.12556/RUL-83975 This link opens in a new window
UDC:338.48
COBISS.SI-ID:23017702 This link opens in a new window
Publication date in RUL:08.07.2016
Views:2560
Downloads:212
Metadata:XML DC-XML DC-RDF
:
PENGOV BITENC, Urška, 2016, Potovalne navade kitajskih turistov : zakaj in kam v Evropo [online]. Master’s thesis. Ljubljana : U. Pengov Bitenc. [Accessed 15 August 2025]. Retrieved from: http://www.cek.ef.uni-lj.si/magister/pengov_bitenc2018-B.pdf
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Travel behaviour of Chinese tourists: why and where to Europe
Keywords:China, Europe, tourism, travel, consumer behaviour, culture, cross-cultural activities, research

Similar documents

Similar works from RUL:
  1. Detekcija uhljev s konvolucijskimi nevronskimi mrežami
  2. Visual ear detection and recognition in unconstrained environments
  3. Generative deep models for ear images
  4. Ear alignment using deep learning
  5. DETECTION OF GLASS CRACKS USING MACHINE VISION
Similar works from other Slovenian collections:
  1. Epileptic seizure detection using topographic maps and deep machine learning
  2. Detection of single person in depth image using convolutional neural networks
  3. No interface, no problem
  4. Development of object detection system for autonomous vehicles by using LiDAR technology
  5. Analysis of the efficiency of transfer learning for object detection

Back