Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Potovalne navade kitajskih turistov : zakaj in kam v Evropo
ID
Pengov Bitenc, Urška
(
Author
),
ID
Knežević Cvelbar, Ljubica
(
Mentor
)
More about this mentor...
,
ID
Rašković, Matevž
(
Comentor
)
URL - Presentation file, Visit
http://www.cek.ef.uni-lj.si/magister/pengov_bitenc2018-B.pdf
Image galllery
Language:
Slovenian
Keywords:
Kitajska
,
Evropa
,
turizem
,
potovanja
,
vedenje potrošnikov
,
kultura
,
medkulturno delovanje
,
raziskave
Work type:
Master's thesis/paper
Typology:
2.09 - Master's Thesis
Organization:
EF - School of Economics and Business
Place of publishing:
Ljubljana
Publisher:
[U. Pengov Bitenc]
Year:
2016
Number of pages:
II, 65, 37 str.
PID:
20.500.12556/RUL-83975
UDC:
338.48
COBISS.SI-ID:
23017702
Publication date in RUL:
08.07.2016
Views:
2560
Downloads:
212
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
PENGOV BITENC, Urška, 2016,
Potovalne navade kitajskih turistov : zakaj in kam v Evropo
[online]. Master’s thesis. Ljubljana : U. Pengov Bitenc. [Accessed 15 August 2025]. Retrieved from: http://www.cek.ef.uni-lj.si/magister/pengov_bitenc2018-B.pdf
Copy citation
Share:
Secondary language
Language:
English
Title:
Travel behaviour of Chinese tourists: why and where to Europe
Keywords:
China
,
Europe
,
tourism
,
travel
,
consumer behaviour
,
culture
,
cross-cultural activities
,
research
Similar documents
Similar works from RUL:
Detekcija uhljev s konvolucijskimi nevronskimi mrežami
Visual ear detection and recognition in unconstrained environments
Generative deep models for ear images
Ear alignment using deep learning
DETECTION OF GLASS CRACKS USING MACHINE VISION
Similar works from other Slovenian collections:
Epileptic seizure detection using topographic maps and deep machine learning
Detection of single person in depth image using convolutional neural networks
No interface, no problem
Development of object detection system for autonomous vehicles by using LiDAR technology
Analysis of the efficiency of transfer learning for object detection
Back