Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Sistem za analizo sentimenta v komentarjih o mobilnih aplikacijah
ID
Kacil, Luka
(
Author
),
ID
Bosnić, Zoran
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(2,45 MB)
MD5: C1C07A657BE7D7477EF80FA91FCA9780
PID:
20.500.12556/rul/d6e74c23-eebe-4228-b571-9044e99b8931
Image galllery
Abstract
Cilj diplomske naloge je bil implementirati sistem za označevanje komentarjev, ki izražajo navdušenje v spletni trgovini Google Play. Pri tem smo najprej opravili pregled področja analize sentimenta, nato pa analizirali komentarje in se bolje spoznali s problemsko domeno. Opisali smo teoretično podlago vseh metod, ki smo jih nato uporabili pri gradnji sistema. Najprej smo vhodne komentarje pretvorili v žetone besed in jih normalizirali, negi- rali in iz njih ustvarili n-grame. Nato smo uporabili korenjenje, popravljanje črkovanja, dodajanje oblikoslovnih oznak in dodatnih zunanjih atributov in ustvarili osem različnih naborov atributov. Iz vsakega nabora smo izbrali najboljše atribute s pomočjo metode χ2 . Za klasifikacijo smo nato uporabili modele, kot so naivni Bayes, logistična regresija in metoda podpornih vektorjev. Sledilo je ovrednotenje klasifikatorjev s pomočjo notranjega prečnega preverjanja, klasifikacijske točnosti, priklica, preciznosti, mere F1 in statističnih testov. Na koncu smo označevanje komentarjev iz naše problemske domene testirali na obstoječih rešitvah za analizo sentimenta in primerjali rezultate. Ugotovili smo, da obstajajo statistično pomembne razlike med rezultati klasifikatorjev. Prav tako so obstajale statistično pomembne razlike med rezultati nekaterih naborov atributov. Ugotovili smo tudi, da obstajajo statistične pomembne razlike med rezultati obstoječih rešitev in nekaterih naših modelov.
Language:
Slovenian
Keywords:
analiza sentimenta
,
nadzorovano strojno učenje
,
metoda podpornih vektorjev
,
naivni Bayes
,
logistična regresija
Work type:
Undergraduate thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2016
PID:
20.500.12556/RUL-83728
Publication date in RUL:
24.06.2016
Views:
2236
Downloads:
530
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
KACIL, Luka, 2016,
Sistem za analizo sentimenta v komentarjih o mobilnih aplikacijah
[online]. Bachelor’s thesis. [Accessed 30 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=83728
Copy citation
Share:
Secondary language
Language:
English
Title:
System for sentiment analysis of comments about mobile applications
Abstract:
The goal of this thesis was to build a sentiment analysis system, which can tag exuberant reviews in the Google Play store. First we gave an overview of the sentiment analysis field and analysis of input comments to better understand our problem domain. We described theoretical foundations of every method used to build our system. We started by transforming input reviews into tokens which were then normalized, negated and transformed in n-grams. After that we used stemming, spell correction, part of speech tagging and adding other attributes to generate eight different collections of features. We selected best features from every collection with χ2 method. For classification we used naive Bayes, logistic regression and support vector machine to classify reviews. After that we evaluated classifiers by using internal cross-validation and computing classification accuracy, recall, precision, F1 score and statistical tests. In the end we tested tagging reviews from our problem domain with existing solutions for sentiment analysis and compared the results. Results revealed that there were statistically significant differences between classifiers. There were also statistically significant differences between some feature collections. Results also revealed that there were statistically significant differences between existing solutions and some of our models.
Keywords:
sentiment analysis
,
supervised machine learning
,
support vector machine
,
naive Bayes
,
logistic regression
Similar documents
Similar works from RUL:
Participacija v gozdarskem načrtovanju
Gorski gozd
Proceedings
Priročnik za gozdni genetski monitoring
Manual for forest genetic monitoring
Similar works from other Slovenian collections:
Analysis of dietary supplements consumption among students of University of Maribor
Healty balanced diet during pregnancy
Dietary supplements in endurance sports
Prehrana v nosečnosti
Eating habits of vegan pregnant women
Back