izpis_h1_title_alt

Pravilni ikozaeder
ID Mihelak, Veronika (Author), ID Razpet, Marko (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/3499/ This link opens in a new window

Abstract
V diplomskem delu so zbrane lastnosti pravilnega ikozaedra, ki študentom matematike približajo snov, hkrati pa lahko učitelji matematike pripravijo naloge za nadarjene učence v osnovni ali srednji šoli. V začetnem delu so opisane osnovne lastnosti poliedrov, ki so značilne tako za ikozaeder kot za ostale pravilne poliedre (tetraeder, kocka, dodekaeder, oktaeder). Dokazali smo, da obstaja le pet pravilnih ali platonskih teles in preverili, da zanje velja Eulerjeva poliedrska formula. Nadalje smo se osredotočili le na izbran polieder. Za izračun prostornine smo potrebovali zlato število, ki je pozitivna rešitev Fibonaccijeve enačbe, zato smo le-to izpeljali iz številčnega zaporedja. V zadnjem delu smo ikozaedru priredili graf v ravnini in se posvetili Hamiltonovemu Potovanju okoli sveta oziroma Ikozaedrski igri ter raziskali simetrije ikozaedra.

Language:Slovenian
Keywords:pravilni poliedri
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Year:2016
PID:20.500.12556/RUL-83441 This link opens in a new window
COBISS.SI-ID:11039561 This link opens in a new window
Publication date in RUL:24.08.2016
Views:1623
Downloads:249
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Regular icosahedron
Abstract:
Here are collected properties of regular icosahedron which are useful for students of mathematics or mathematics teachers who can prepare exercises for talented students in elementary or middle school. The initial section describes the basic properties of regular polyhedra: tetrahedron, cube, dodecahedron, octahedron and of course icosahedron. We have proven that there are only five regular or platonic solids and have verified Euler's polyhedron formula for them. Then we focused on selected polyhedron. To calculate the volume we need the golden number which is a positive solution of the Fibonacci equation. In the last part we have made planar graph for icosahedron and have told something about Hamilton's trip around the world (Icosian game) and explore symmetry of icosahedron.

Keywords:regular polyhedra

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back