izpis_h1_title_alt

Integracija naprav z nizko porabo energije in omejeno zmožnostjo brezžičnih komunikacij v odprtokodno platformo interneta stvari.
ID ŠPRAJC, PETER (Author), ID Kos, Andrej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,99 MB)
MD5: 9D9842FB3B54AF24E5763978E5E671D6
PID: 20.500.12556/rul/ecfdaa15-3237-4260-b8f7-fb0cfc5c5f37

Abstract
Število uporabnikov socialnih omrežij se je v zadnjih nekaj letih povečevalo z nepričakovano hitrostjo. Na primer, spletna stran Facebook, ki je bila prvič vzpostavljena leta 2004, je marca 2016 zabeležila 1.09 milijarde hkrati aktivnih uporabnikov [1]. Število tako predstavlja vsakega sedmega prebivalca našega planeta kot aktivnega uporabnika spletne storitve enega od ponudnikov socialnega omrežja. Če pa upoštevamo, da je mnogo ponudnikov spletnih storitev socialnih omrežij, njihovi uporabniki pa se nahajajo v različnih časovnih pasovih, je ocenjeno število dejanskih uporabnikov svetovnega spleta še mnogo večje. V prihodnosti lahko pričakujemo vzpostavitev spletnih strani povezanih naprav. Število povezanih naprav bo raslo po vzorcu rasti uporabnikov spletnih strani socialnih omrežij, najverjetneje pa še mnogo hitreje. Naprave, kot so senzorji, pametna stikala in nepredstavljiva množica drugih naprav, že sedaj in bodo tudi v bodoče v prvi vrsti komunicirale med sabo - komunikacija M2M. Kasneje bodo te naprave s pomočjo različnih prehodov v Internet komunicirale z upravljalsko strežniško infrastrukturo, kar danes poznamo pod pojmom Internet stvari (IoT). Ocenjeno število povezanih naprav bo nekajkrat večje, kot je današnje število v omrežje povezanih tako imenovanih pametnih naprav, kot so pametni telefoni, tablični računalniki in računalniki. Pričakovati je, da bodo povezane naprave cenene in omejene v računski moči oziroma da ne bodo imele zmogljive strojne opreme, kot jo imajo današnje pametne naprave. To pomeni, da ne bodo imele zmogljivost klasične povezljivosti od izvora do ponora na nivoju internetnega protokola IP. Internetni protokol predvideva, da so vse naprave med seboj omrežni sovrstniki oziroma da predstavljajo omrežje med seboj enakovrednih partnerjev. Pristop, ki ga bom obravnaval v tem magistrskem delu, bo drugačen. Tradicionalni omrežni protokoli so načrtovani robustno z namenom zanesljivosti za uporabo v mnogo ponovitvenih ciklih in za velike podatkovne tokove. Navedene lastnosti so zaželene tudi v omrežjih IoT, vendar kot je bilo že prej navedeno, standardni Internetni omrežni protokoli niso najustreznejši, saj za svoje delovanje potrebujejo veliko režijskih podatkov. Razmerje količine potrebnih režijskih podatkov standardiziranega Internetnega protokola v primerjavi z majhnimi sklopi podatkov, ki jih pošilja tipična naprava v IoT, je preveliko. Zato je smiselno uvajanje nove rešitve, ki omogoča soobstoj naprav s podporo za IP skupaj z napravami, ki nimajo podpore za IP oziroma je ne zmorejo. Smiselnost uvajanja nove rešitve je v tem, da bi obremenjevanje sicer enostavnih naprav, kot so senzorji, stikala, ipd., z omrežnim Internetnim protokolnim skladom močno povečalo končne stroške in kompleksnost številnih preprostih naprav. Tradicionalni omrežni protokoli in aplikacije so v glavnem načrtovane tako, da je na eni strani komunikacije človek in da so posledično načrtovane za optimalno uporabniško izkušnjo. Ta tradicionalni pristop zahteva veliko režijskih podatkov, ki pa so v primeru komunikacije stroj-stroj nepotrebni. Razvoj arhitekture naj vodi nove rešitve za prihajajoče povezane naprave v IoT v minimiziranje količine potrebnih režijskih podatkov. Prihodnost Interneta stvari je v povezovanju naprav v omrežje, ki še nikoli niso komunicirale med seboj ali bile povezane v Internet. Takšne naprave niso »pametne« v današnjem pomenu besede, vendar so zelo primerne za izvedbo svoje primarne specializirane vloge in bodo predstavljale končne oziroma robne naprave v IoT. Končne naprave lahko imajo naslov, ki je unikaten v lokalni skupnosti naprav, vendar ni nujno unikaten globalno. Slednje bodo uspešno reševale inteligentne omrežne naprave z globalno unikatnim naslovom IP in tako predstavljajo prehod v Internet za lokalno skupnost naprav. Takšen pristop bo omogočal hitrejšo rast števila povezanih naprav in ogromno zmanjšanje stroškov za vpeljavo funkcionalnosti povezljivosti ob upoštevanju predvidenega števila povezanih naprav. Večji del komunikacije v IoT bo komunikacija tipa M2M. Posledično bi hitro izbrali način komunikacije vsak z vsakim (angl. Peer-to-peer) za najprimernejši. Vendar mnoge končne naprave v IoT medsebojno ne bodo komunicirale, saj ni nobene potrebe po izmenjavi informacij med njimi. Kot je bilo že omenjeno, je obremenjevanje vseh končnih naprav z Internetnim protokolnim skladom, dodajanje računske moči in pomnilnika za zagotavljanje popolne komunikacije vsakega z vsakim nepotrebno. Ustvarjalo bi več tveganj za napake, možnost napak pri nastavitvah in upravljanju ter dovzetnost za omrežne napade in okužbe s škodljivo programsko opremo. Vključevanje končnih naprav v IoT se izvede tako, da te sporočajo ali sprejemajo le zanje relevantne podatke. Univerzalni pristop za izgradnjo IoT povečuje stopnjo inteligence in sposobnost mreženja naprav v smeri, v kateri končne naprave pošiljajo informacije. Tak koncept omogoča transport podatkov skozi različne točke v omrežju tako, da ne obremenjujemo vsake naprave, vključene v IoT, z enako zmogljivostjo povezovanja. V primeru, ko končne naprave ne zmorejo funkcionalnosti inteligentne komunikacije, morajo določene ostale naprave v omrežju zagotoviti učinkovit prenos podatkov. Najrealnejši koncept nastajajoče arhitekture Interneta stvari je delitev omrežja v tri funkcijske sklope, kar omogoča vpeljavo različne kompleksnosti omrežne funkcionalnosti v posameznem delu omrežja, glede na potrebe. Trije funkcijski sklopi so naslednji: - sklop končnih naprav, - sklop naprav s funkcionalnostjo mreženja in propagiranja sporočil, - sklop izvajanja integralnih funkcij za analizo, nadzor in uporabniški vmesnik za IoT. V sklopu magistrskega dela nameravam predstaviti in implementirati praktičen primer koncepta arhitekture prihajajočega Interneta stvari z izgradnjo tipičnega predstavnika posameznega funkcijskega sklopa. Končna naprava, ki jo odlikuje cenenost, majhna poraba in omejena komunikacija s sosednjimi napravami, bo sestavljena iz radijskega vmesnika proizvajalca Nordic Seminconductor, model nRF24l01+, priključenega na mikrokrmilnik proizvajalca Arduino. Naprava s funkcionalnostjo mreženja in propagiranja sporočil bo sestavljena iz radijskega vmesnika proizvajalca Nordic Seminconductor, model nRF24l01+, priključenega na mikrokrmilnik proizvajalca Arduino. Mikrokrmilnik bo imel priključen tudi Internetni omrežni vmesnik. Z uporabo omrežnega vmesnika z zmožnostjo povezljivosti od izvora do ponora na nivoju Internetnega protokola IP bo posredoval sporočila Integralnemu sklopu z uporabo telemetrijskega protokola MQTT. Izvajanje integralnih funkcij za analizo, za nadzor in za uporabniški vmesnik za IoT bom realiziral z uporabo minimalističnega računalnika Raspberry Pi. Sporočila, posredovana iz sklopa za funkcionalnost mreženja, in posredovanje sporočil v IoT bo sprejemal in pošiljal ob uporabi transportnega sporočilnega protokola MQTT. Za integralne funkcije, za nadzor in za uporabniški vmesnik pa bo uporabljena odprtokodna programska oprema OpenHAB.

Language:Slovenian
Keywords:povezane naprave, senzorji, stroj-stroj, M2M, Internet stvari, IoT, inteligenca naprav, nRF24l01+, Arduino, Raspberry Pi, sporočilni protokol, MQTT, OpenHAB, odprtokodna programska oprema
Work type:Master's thesis
Organization:FE - Faculty of Electrical Engineering
Year:2016
PID:20.500.12556/RUL-83189 This link opens in a new window
Publication date in RUL:07.06.2016
Views:2437
Downloads:891
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Integration of Devices with Low Energy Consumption and Limited Wireless Communication Capacity into an Internet of Things Open Source Platform.
Abstract:
The number of social network users in the last few years has increased at an unexpected rate. For example, the Facebook web site, which was first established in 2004, recorded 1.09 billion simultaneous active users in March 2016. This number represents every seventh inhabitant of the planet as an active user of online services of one of the providers of social networks. But considering that there are many online social network service providers, and that their users are located in different time zones, the estimated number is much bigger. In the future, we can expect the creation of social networks of connected devices. The number of connected devices will grow at the growth rate of users of social networks, or probably much faster. Devices such as sensors, smart sensors and other unimaginable devices already do, and will in the future primarily communicate with each other (Machine-to-machine communication - M2M). Later, these devices will be connected to Internet through gateways to communicate with management server infrastructure, which is a term used today known as Internet of Things (IoT). The estimated number of connected devices will be several times greater than today's present number of smart devices such as smart phones, tablets and computers on network. It is expected that the connected devices will be cheap and limited in computing power. And that they will not have as powerful hardware as today's smart devices. This means that they will not have the capacity of traditional Internet Protocol connectivity. Internet Protocol assumes that all devices are alike on the network and as such represent a network of equal partners. Approach that will be discussed in this thesis will be different. The traditional network protocols such as TCP / IP are robustly designed with reliability, for use in many repetitive cycles and in large data streams. These features are also desirable in IoT networks, but as previously mentioned standard Internet network protocols are not the most appropriate as they require a lot of overhead data to function. The ratio of the amount of overhead data needed in standardized Internet protocol compared to small sets of data sent by a typical device in the IoT is too high. Therefore, it makes sense to introduce new solutions that enable co-existence with devices that do not support IP or with those that cannot. The idea behind introducing a new solution lies in the fact that the burden on otherwise simple devices such as sensors, switches, etc., with a full network Internet protocol stack also significantly increases the final cost and complexity of a number of simple devices. Traditional network protocols and applications are mainly designed in such a way that on one end is human and communications are consequently designed to optimize the user experience. This traditional approach requires a lot of overhead data, which is unnecessary in the case of M2M communication. The development of new architectural solutions for the forthcoming connection devices in the IoT should lead to the minimization of necessary overhead data. The future of IoT is in connecting devices to the network, which have never communicated with each other before or were never connected to the Internet. Such systems or devices are not "smart" in the modern sense of the word, but they are very suitable for carrying out their primary role of specialized tasks and they will represent the end or edge devices in the IoT. The end devices may have an address that is unique in the local community, but is not necessarily globally unique. This issue will solve intelligent network edge devices with globally unique IP address. Intelligent network edge devices will constitute a communication path to the Internet for local connected community of devices. Such an approach would allow for rapid growth in the number of connected devices and greatly reduce the cost of introducing functionality of connections taking into account the anticipated number of connected devices. M2M is the major part of communication in the IoT. As a result, we could quickly select the most appropriate mode of communication type as peer-to-peer. However, many end devices in the IoT will not be communicating with each other, since there is no need to exchange information between them. As already mentioned, to burden of all end devices with Internet Protocol stack, adding computing power and memory to provide a complete communication peer is unnecessary. This would create more risk for errors, the possibility of errors in the configuration and management, and vulnerability to network attacks and infections with malware. Adding end devices to the IoT is carried out in such a way that they would send or receive information only relevant to them. The universal approach for building the architecture of IoT increases the level of intelligence and capability of networking of devices in the direction which the end device is sending information. This concept allows for the transport of data through various points in the network without burdening each device included in IoT, with the same capacity of connectivity. In situations where endpoint devices are not capable of intelligent communication functionality, other devices must be set in the network to ensure the efficient transfer of data. The most realistic concept of the emerging architecture of the IoT is in the division of the network into three functional sections/units, which enables the employment of a variety of complex network functions in a particular part of the network, according to needs. Three functional units are: - the end devices, - the propagator nodes providing transport and gateways to the traditional Internet, - the integrator functions offering analysis, control, and human interfaces to the IoT. In this master thesis I intend to present and implement a practical example of the concept of the architecture for the forthcoming IoT with the construction of a typical representative of each functional unit. The end device, which features easy to use, low power consumption and limited communication with the neighboring devices consists of a radio interface manufacturer Nordic Seminconductor model nRF24l01+ connected to a microcontroller made by manufacturer Arduino. The propagator device with the functionality of networking and propagation of messages consists of a radio interface manufacturer Nordic Seminconductor model nRF24l01+ and Internet network interface connected to an Arduino microcontroller. By using the network interface capable of providing connectivity from source to sink at the level of Internet Protocol IP, it will send messages to the integral unit using a telemetry protocol MQTT. A minimalist computer, Raspberry Pi, is used for the implementation of integrator functions for analysis, control and user interface for IoT. Messages transmitted from the propagator device are received and sent using a transport protocol MQTT. For integrator functions is used open source software OpenHAB.

Keywords:connected devices, sensors, machine-to-machine, M2M, Internet of Things, IoT, intelligence devices, nRF24l01+, Arduino, Raspberry Pi, messaging Protocol, MQTT, OpenHAB, Open-source Software

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back