Details

Načrtovanje kondicijske vadbe v namiznem tenisu z vidika različnih starostnih kategorij : diplomsko delo
ID Ropoša, Bojan (Consultant), ID Filipčič, Aleš (Reviewer), ID Slatinšek, Uroš (Comentor), ID Kondrič, Miran (Mentor) More about this mentor... This link opens in a new window, ID Škurnik, Jure (Author)

URLURL - Presentation file, Visit http://www.fsp.uni-lj.si/COBISS/Diplome/Diploma22064560SkurnikJure.pdf This link opens in a new window

Language:Slovenian
Keywords:namizni tenis, kondicijska priprava, metode, gibalne sposobnosti, gibalni razvoj, ciklizacija, periodizacija, rezultati, uspešnost, cilji, načrt, mladi, puberteta
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:FŠ - Faculty of Sport
Place of publishing:Ljubljana
Publisher:[J. Škurnik]
Year:2013
Number of pages:94 f.
PID:20.500.12556/RUL-81795 This link opens in a new window
UDC:796.386
COBISS.SI-ID:4423601 This link opens in a new window
Publication date in RUL:24.05.2016
Views:2539
Downloads:370
Metadata:XML DC-XML DC-RDF
:
ŠKURNIK, Jure, 2013, Načrtovanje kondicijske vadbe v namiznem tenisu z vidika različnih starostnih kategorij : diplomsko delo [online]. Bachelor’s thesis. Ljubljana : J. Škurnik. [Accessed 17 June 2025]. Retrieved from: http://www.fsp.uni-lj.si/COBISS/Diplome/Diploma22064560SkurnikJure.pdf
Copy citation
Share:Bookmark and Share

Similar documents

Similar works from RUL:
  1. Using synthetic data to train convolutional neural networks for the case of hand detection
  2. Computer vision on embedded devices for natural user interfaces
  3. Long-term object tracking using region proposals
  4. Segmentacija rok za obogateno resničnost
  5. Melt pool detection at wire arc welding
Similar works from other Slovenian collections:
  1. Person age estimation based on digital images using convolutional neural networks
  2. Development of an advanced system for lane detection on GPU platforms
  3. Food recognition from digital images using convolutional neural networks
  4. Time series classification based on convolutional neural networks
  5. The preparation of photos' dataset and its classification using deep neural networks

Back