izpis_h1_title_alt

NAPREDNE MEMBRANSKE MIKROČRPALKE S PIEZOELEKTRIČNIM VZBUJANJEM NA OSNOVI PDMS ELASTOMERA
ID DOLŽAN, TINE (Author), ID Vrtačnik, Danilo (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,95 MB)
MD5: 7E685AF7CE69F96EF0C74F6CCC80D5C9
PID: 20.500.12556/rul/aa769ad2-6224-4c57-8c23-6e9aa3fd699d

Abstract
Mikročrpalke predstavljajo osrednji del mikrofluidnih sistemov, kjer skrbijo za manipulacijo s tekočinami. Prednosti takšnih sistemov so majhnost, majhna poraba reagentov in energije, hitrost analize, prenosljivost, cena itd. V okviru disertacije smo raziskali, zasnovali in izdelali tri nove tipe mikročrpalk, ki predstavljajo nadaljevanje razvoja in raziskav pripirnih in mikrocilindrskih črpalk v LMSE na Fakulteti za elektrotehniko Univerze v Ljubljani. Na osnovi naprednih 3D numeričnih simulacij smo zasnovali prve prototipe mikrocilindrskih črpalk, pri katerih smo vhod mikropregradne črpalke premaknili v center komore in s tem izdelali ventilsko strukturo (cilindrični vhodni ventil) na mestu, kjer je upogib membrane največji. V predloženem delu predstavljamo nov, izboljšan tip mikrocilindrske črpalke, kjer smo izhodno pregradno ventilsko strukturo nadomestili s stopnico, v kateri je izdelan izhod. Odsotnost fluidnega kanala za stopničasto ventilsko strukturo prinese manjšo fluidno upornost in ugoden vpliv na pretok. Večja površina ventila omogoča boljše zapiranje in večjo tlačno zmogljivost. Ostranitev kanala za ventilsko strukturo zmanjša površino mikročrpalke. Izhodna stopničasta ventilska struktura prinaša možnost vplivanja na lastnosti izdelanih mikročrpalk s spreminjanjem pozicije izhoda na stopnici, brez potrebe po izdelavi novega kalupa. Če izhod približamo robu ventilske strukture, ima mikročrpalka boljšo pretočno karakteristiko in slabšo tlačno, pri izhodu, ki je bolj oddaljen od roba, pa je ravno obratno. Izdelane mikročrpalke so pri vzbujanju s pravokotnim signalom z amplitudo 250 V in frekvenco 90 Hz dosegle pretočno zmogljivost črpanja deionizirane vode do 2,4 ml/min (neobremenjen izhod) in tlačno zmogljivost do 520 mbar pri zaprtem izhodu. To je bistveno izboljšanje karakteristike glede na mikrocilindrsko črpalko s pregradnim izhodnim ventilom (1,4 ml/min in 180 mbar, pri enakih pogojih vzbujanja). Pri črpanju zraka so mikrocilindrske črpalke dosegle pretok 8 ml/min, zastojni tlak 60 mbar na izhodu in podtlak na vhodu do -80 mbar pri optimalni frekvenci vzbujanja 300 Hz. Za zanesljivost mikročrpalk je izrednega pomena sposobnost črpanja dvofaznega medija (mešanica kapljevine in plina). Ugotovili smo, da lahko mikrocilindrska črpalka brez odpovedi črpa dvofazni medij do tlačne obremenitve na izhodu, ki dosega 70 % maksimalne tlačne vrednosti pri črpanju plina. Izkazalo se je, da se lahko mikrocilindrska črpalka sama napolni s kapljevino iz rezervoarja, ki je 60 cm ali manj pod nivojem mikročrpalke.Kakor večina mikročrpalk z ventilskimi strukturami, lahko tudi mikrocilindrska črpalka črpa tekočino le v eno smer, kar je posledica njene strukture. Da bi odstranili to omejitev, smo izkoristili lastnost mikrocilindrske črpalke, in sicer njeno prepustnost za tekočine v neaktivnem stanju. V ta namen smo zasnovali in izdelali mikrocilindrsko strukturo črpalke, ki vključuje dve protiserijsko povezani mikrocilindrski črpalki s skupnim izhodnim pregradnim ventilom. Tovrstna dvosmerna mikrocilindrska črpalka ima dve komori in dva aktuatorja, smer črpanja pa določa aktuator, ki ga vzbujamo. Ker v tem primeru ne potrebujemo sinhroniziranega vzbujanja aktuatorjev, je izvedba električnega krmilnega sistema enostavna. Dvosmerne mikročrpalke so pri vzbujanju s pravokotnim signalom z amplitudo 250 V in frekvenco 120 Hz dosegle pretočno zmogljivost črpanja deionizirane vode 1,2 ml/min in tlačno zmogljivost 200 mbar. V primeru črpanja zraka je dvosmerna mikročrpalka dosegla pretok 3 ml/min pri frekvenci vzbujanja 300 Hz, tlak pri zaprtem izhodu 35 mbar in podtlak -48 mbar pri tipični frekvenci vzbujanja 180 Hz. Z uvajanjem mehurčkov različnih velikosti na vhod črpalke smo ovrednotili tudi zanesljivost dvosmerne mikročrpalke v primeru črpanja dvofaznega medija. Izkazalo se je, da se dvosmerna mikročrpalka obnaša podobno kot mikrocilindrska črpalka. Mikročrpalka je brez obremenitve sposobna črpati dvofazni medij ob padcu pretoka, v času prisotnosti dvofaznega medija v komori, na približno 50 % začetnega. V primeru obremenitve na izhodu dvosmerna mikročrpalka odpove pri tlačnih obremenitvah večjih od 25 mbar. Znanje, pridobljeno pri raziskavah mikrocilindrskih črpalk, je vodilo do razvoja nove strukture peristaltske mikročrpalke s samo enim aktuatorjem. Peristaltska mikročrpalka je v osnovi modificirana mikrocilindrska črpalka, pri kateri pripirne ventile nadomestimo z eno samo, optimizirano globino kanala in komore. Izdelava take peristaltske mikročrpalke zahteva enonivojski kalup, ki ga je mogoče izdelati bistveno enostavneje in hitreje. Tudi pozicija vhoda in izhoda nimata bistvenega vpliva na delovanje mikročrpalke, kar dodatno poenostavi proces izdelave. Izdelane peristaltske mikročrpalke so pri vzbujanju s kvadratnim signalom z amplitudo 250 V in frekvenco 70 Hz dosegle pretočno zmogljivost črpanja deionizirane vode 220 μl/min in tlačno zmogljivost 300 mbar. Maksimalen izmerjen podtlak na vhodu je bil -150 mbar pri frekvenci 70 Hz. Nižja pretočna zmogljivost glede na mikrocilindrske črpalke je bila pričakovana, ker imata plitka komora in izhodni kanal veliko fluidno upornost. Pri karakterizaciji z zrakom je peristaltska mikročrpalka dosegla pretok 0,8 ml/min in tlak 70 mbar pri frekvenci 140 Hz. Na vhodu smo izmerili podtlak –140 mbar pri frekvenci 140 Hz, kar je izrazito ugodno za sposobnost samopolnjenja. Razvite peristaltske mikročrpalke so se sposobne same napolniti in brez odpovedi črpati dvofazni medij.

Language:Slovenian
Keywords:Mikročrpalke, mikrofluidika, elastomer PDMS, numerične simulacije, numerical simulation
Work type:Doctoral dissertation
Organization:FE - Faculty of Electrical Engineering
Year:2016
PID:20.500.12556/RUL-81191 This link opens in a new window
COBISS.SI-ID:11332692 This link opens in a new window
Publication date in RUL:31.03.2016
Views:3883
Downloads:590
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:ADVANCED PIEZOELECTRICALLY ACTUATED MEMBRANE MICROPUMPS BASED ON PDMS ELASTOMER
Abstract:
Micropumps are essential part of every microfluidic system. They are responsible for effective and reliable manipulation of fluids. Small size, low energy consumption, low reagent consumption, high speed of analysis and low price are major advantages of such microfluidics systems. In this work, design, research and fabrication of three novel types of micropumps are presented. This is a continuation of our past research on microthrottle and microcylinder pumps in LMSE at the Faculty of Electrical engineering UL. These first microcylinder pumps were successfully designed by employing of advanced 3D numerical simulations. As a result of numerical optimizations, fluid inlet was positioned in the center of pumping chamber, where membrane deformation is the largest. In this work, an improved type of microcylinder pump with a redesigned outlet rectifying element is presented. By replacing microthrottle with step shaped outlet rectifying element, micropump performance characteristics significantly improved. In this case, fluidic resistance is decreased due to the absence of fluidic channel past the rectifying structure, which is advantageous in terms of flow rate performance. Large area of step-shaped rectifying element enables more efficient compression which is beneficial in terms of backpressure performance. Moreover, absence of fluidic channel after valve structure also reduces micropump size. With such a modification, micropump backpressure and flowrate performance characteristics can be influenced by varying the position of outlet (hole punctured into PDMS elastomer layer during micropump fabrication process) on the outlet rectifying element area without need to fabricate entirely new silicon mold. If the outlet is positioned closer to the edge of the step-shaped structure, micropump will exhibit higher flow-rate performance characteristics but lower back-pressure performance characteristic and vice versa. For micropump excitation, rectangular wave-form with amplitude of 250 V and frequency of 90 Hz was employed. Fabricated prototypes exhibited maximum flowrate performance of 2,4 ml min-1 (for deionized water at zero backpressure) and maximum backpressure performance of 520 mbar (for deionized water at closed outlet). This is a significant performance improvement in comparison to previous conventional microcylinder pump prototypes comprising throttle outlet rectifying element (with maximum flowrate performance of 1,4 ml min-1 and with maximum backpressure performance of 180 mbar at comparable excitation waveforms). With air as pumping medium the microcylinder pumps exhibited maximum flowrate performance of 8 ml min-1, maximum backpressure performance of 60 mbar and under-pressure performance of -80 mbar at 300 Hz excitation frequency. For micropump reliability, bubble-tolerance (ability to pump two-phase medium, which is a mixture of gas bubbles and liquid) is crucial. It was determined that microcylinder pump is completely bubble tolerant for pressure loads in the range of 70 % of maximum air backpressure performance. Moreover, the microcylinder pump was found to be able to self-prime and will fill by itself with deionized water, when the reservoir is positioned up to 60 cm below the micropump. Microcylinder pump, as most of micropumps with rectifying elements, is only capable of pumping liquids in single direction, predefined by its structure. To remove this limitation, we have taken advantage of microcylinder pump characteristic that it is normally open. We have designed and fabricated bidirectional microcylinder pump, by integrating on the same substrate in anti-series two microcylinder pumps with common outlet throttle. This bidirectional microcylinder pump has two separate pumping chambers and two actuators. The main advantage of this approach is that flow direction is selected only by exciting appropriate actuator, with no need for synchronous driving system. Therefore, complex driving system is not required. Bidirectional microcylinder pumps were excited with rectangular wave-form with amplitude of 250 V and frequency of 120 Hz. For DI-water, maximum measured flow rate performance and maximum measured backpressure performance was 1,2 ml min-1 and 200 mbar, respectively. For air, maximum measured flowrate performance was 3 ml min-1 @ 300 Hz, maximum backpressure was 35 mbar @ 180 Hz and maximum under-pressure was 48 mbar @ 180 Hz. Bidirectional microcylinder pump bubble tolerance was evaluated by introducing air bubbles of various diameters into micropump chamber. It was determined that bidirectional micropump is bubble tolerant without pressure load at the outlet. However, the flowrate decreased to approximately 50 %. With pressure load present at outlet, bidirectional micropump will fail when load exceeds 25 mbar. Based on knowledge gained by the development of microcylinder pump, a novel structure of peristaltic micropump with single actuator was developed. Monoactuator peristaltic micropump was designed by modification of microcylinder pump, where rectifying structures were replaced by single shallow level of chamber and outlet fluidic channel. To produce this type of micropump, silicon mold with only one level of depth is required. Fabricating process for such mold is simpler and faster. It was determined that the precision of fluidic inlet and outlet has no significant impact on micropump performance and further simplify fabrication process. For deionized water, fabricated monoactuator peristaltic micropumps exhibited maximum measured flowrate of 220 μl min-1, backpressure of 300 mbar and under-pressure of 150 mbar (rectangular waveform with amplitude of 250 V and frequency of 70 Hz). Decreased flowrate performance is attributed to high fluidic resistance of shallow pumping chamber and fluidic outlet channel. With air as pumping medium, maximum flow rate, maximum backpressure and maximum under-pressure were 0,8 ml min-1, 70 mbar and 140 mbar, respectively at excitation frequency of 140 Hz. High under-pressure performance was found to improve self-priming ability. Developed single-actuator peristaltic micropumps are self-priming and bubble tolerant.

Keywords:micropumps, PDMS elastomer, Microfluidics

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back