izpis_h1_title_alt

Uporaba stojnega učenja pri napovedovanju cen kart v igri Magic
ID LIPOVEC, JERNEJ (Author), ID Bratko, Ivan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,20 MB)
MD5: 24A2626BBC8CBFF85DA1BDB9E677DE92
PID: 20.500.12556/rul/1da3efd5-3909-45ad-8825-eb028f5e7d26

Abstract
V tem diplomskem delu smo preučevali trende gibanja cen pri kartah igre Magic: The Gathering in pri tem uporabili najbolj primerne metode strojnega ućenja. Cilj je bil izdelati napovedni model za cene kart. Naša naloga je bila identiciranje pomembnih virov, pridobivanje potrebnih podatkov, njihova pretvorba v računalniku razumljivo obliko ter izbira primernega algoritma. Model, ki smo ga ustvarili, se je izkazal za zanesljivega s 61% točnostjo napovedi gibanja cene pri zelo redkih kartah, medtem ko smo pri redkih kartah dosegli le 52% točnost, kar ni preseglo niti privzete točnosti. Pri nalogi smo uporabili metodo podpornih vektorjev ter si pomagali z orodjem Weka. S podatki, ki smo jih pridobili, smo naredili še nekaj poizkusov in tako poiskali nekaj novih odvisnosti med podatki, ki jih prej nismo poznali.

Language:Slovenian
Keywords:strojno učenje, predvidevanje cen, MTG, prosti trg, ponudba in povpraševanje, metoda podpornih vektorjev, Weka, podatkovno rudarjenje
Work type:Undergraduate thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2016
PID:20.500.12556/RUL-81065 This link opens in a new window
Publication date in RUL:25.03.2016
Views:1684
Downloads:429
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Predicting the prices of cards in the game Magic with machine learning
Abstract:
This thesis is a study of Magic: The Gathering card price fluctuations using the most appropriate machine learning methods. The goal was to construct a predictive model for card prices. This required us to identify crucial attributes, gather necessary data, convert it to a machine-readable format and select a suitable learning algorithm for the task. The resulting model was effective, attaining a 61 % price trend accuracy with mythic rare cards, while it was less successful with rare cards with only 52% accuracy, which failed to beat default accuracy. Support vector machines algorithms and the machine learning toolbox Weka were used to achieve these results, which were applied in further experiments that led to the discovery of previously unknown data dependencies.

Keywords:machine learning, price prediction, MTG, free market, supply and demand, support vector machines, Weka, data mining

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back