Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
NP-polnost miselnih iger in ugank : diplomsko delo
ID
Pahor, Samo
(
Author
),
ID
Mihelič, Jurij
(
Mentor
)
More about this mentor...
PDF - Presentation file,
Download
(10,58 MB)
MD5: C250CBF6523D1ED19DF70166C9FA025F
PID:
20.500.12556/rul/1ff1e0c6-f4e9-4242-b720-8945fe57990f
Image galllery
Abstract
Najtežje probleme v NP imenujemo NP-polni problemi, za njih pa trenutno velja, da jih ne znamo rešiti v polinomskem času. NP-polne odločitvene probleme najdemo na različnih področjih, od teorije grafov, do izjavne logike, nadalje pa velja, da ob odkritju rešitve enega od problemov znamo rešiti tudi vse druge NP-polne probleme. V diplomskem delu se bomo osredotočili predvsem na NP-polne probleme, povezane z reševanjem miselnih iger in ugank. Naredili bomo pregled nekaterih znanih miselnih iger in pokazali njihovo NP-polnost. Dokaz NP-polnosti izbranih problemov bo temeljil na dejstvu, da med NP-polnimi problemi obstajajo prevedbe. Za vsako miselno igro bomo torej najprej opisali igri pripadajoči odločitveni problem, nato pa reševanje nekega že znanega NP-polnega odločitvenega problema prevedli na reševanje igri pripadajočega odločitvenega problema.
Language:
Slovenian
Keywords:
odločitveni problem
,
uganka
,
računska zahtevnost
,
NP-polnost
,
prevedba
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
FRI - Faculty of Computer and Information Science
Publisher:
[S. Pahor]
Year:
2016
Number of pages:
52 str.
PID:
20.500.12556/RUL-80175
COBISS.SI-ID:
1536772803
Publication date in RUL:
03.02.2016
Views:
1468
Downloads:
347
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Share:
Secondary language
Language:
English
Title:
NP-completeness of mind games and puzzles
Abstract:
The hardest problems in NP are called NP-complete problems; these are problems that we currently do not know how to solve quickly. There is a variety of NP-complete decision problems in different fields, ranging from graph theory to logic and also note that upon finding a solution to one NP-complete problem, we are able to solve any problem that belongs to the NP-complete class of problems. The thesis will focus on NP-complete problems related to solving puzzles and brain-teasers. We will present a summary of a few well known puzzles and show that they are indeed NP-complete. The proof for their NP-completeness will stem from the existence of transformations (or reductions) between them. For each puzzle we will first present the respective decision problem and then transform the solving of an already proven NP-complete decision problem to solving the decision problem pertaining to each puzzle.
Keywords:
decision problem
,
puzzle
,
computational complexity
,
NP-comple-teness
,
reduction
Similar documents
Similar works from RUL:
Similar works from other Slovenian collections:
Back