izpis_h1_title_alt

PRECIZNA LASERSKA TRIANGULACIJA S SKENIRANJEM SIMETRIČNEGA VZORCA NA OBJEKTIH RAZLIČNIH OPTIČNIH LASTNOSTI
ID Žbontar, Klemen (Author), ID Mihelj, Matjaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (10,97 MB)
MD5: 8A5EFEED8C78384B862D8F072CD1C2D2
PID: 20.500.12556/rul/73c58e3b-6d52-4b1d-aa00-ab2d11e4cb84

Abstract
Doktorska disertacija predstavlja namenski brezkontaktni merilnik premika površine različnih tipov materialov, ki temelji na principu laserske triangulacije in zagotavlja visoko točnost merjenja. Lasersko strukturiranje omogoča hitro in precizno izdelavo prototipov, široko uporabno predvsem na področju elektronike ter fotovoltaike. Proces kot izvršno orodje uporablja fokusiran laserski žarek primerne valovne dolžine, pri čemer je strukturiranje realizirano preko sistema odklanjanja laserskega žarka po površini materiala. Divergenca laserskega žarka, ki je definirana z uporabljenimi optičnimi elementi, določa območje okoli fokusne ravnine laserskega žarka, v katerem sta premer ter intenziteta žarka še primerna za zadostitev toleranc izdelave. Posledično je kvaliteta izdelanega vzorca direktno povezana s točnostjo določanja pozicije površine materiala glede na fokusno ravnino laserskega žarka, za kar je potreben robusten merilnik premika. Komercialni merilniki premika, tako kontaktni, kot tudi brezkontaktni, niso primerni za uporabo v omenjeni aplikaciji laserskega strukturiranja. Le-ta namreč med procesom strukturiranja uporablja fiksno pritrjeno odsesovalno-varovalno komoro, ki odstranjuje odpadni material ter ščiti pred sevanjem laserske svetlobe. Poleg tega mora biti meritev izvedena v središču obdelovalnega polja laserskega sistema, brez da bi senzor zastiral laserski žarek. Zato smo zasnovali in zgradili lastni brezkontaktni merilnik premika, ki za namene merjenja uporablja primerno reguliran vgrajeni izvor laserske svetlobe ter dodatno kamero za zajem sipane svetlobe. Kamero smo namestili izven odsesovalno-varovalne komore, kar pomeni, da tak merilnik ne omejuje obdelovalnega polja laserskega sistema. Uporabili smo visoko-kvalitetni UV laserski žarek, ki se primarno uporablja za strukturiranje in predstavlja novost. Ta poleg visoke stabilnosti projekcije ter distribucije intenzitete žarka omogoča merjenje prosojnih materialov, ki predstavljajo največjo omejitev za komercialne laserske triangulacijske senzorje. Uporaba UV laserskega žarka je smiselna, saj ima večina prosojnih materialov visok koeficient absorpcije za svetlobo v UV spektru. Optične lastnosti merjene površine ter raznovrstne površinske poškodbe močno vplivajo na točnost računanja oddaljenosti, saj je merilni rezultat pridobljen posredno preko določanja središča zajetega svetlobnega signala. Občutljivost meritve na omenjene probleme smo zmanjšali preko projekcije simetričnega vzorca, ki poveča aktivno površino merjenja ter s tem zmanjša vplive lokalnih nepravilnosti materiala. Projekcijo simetričnega vzorca smo realizirali preko skeniranja laserske pike po zaključeni trajektoriji, pri čemer je potrebno uporabiti zadosti visoko hitrost skeniranja. Ta korak rezultira v povprečenju distribucije svetlobe po vzorcu, kakor tudi zmanjša vpliv pegastega šuma na merilno negotovost. Pogoj za robustno merjenje različnih tipov materialov je primerno nastavljanje intenzitete laserskega žarka glede na optične lastnosti merjene površine. Zaradi zahteve po ponovljivosti ter objektivnosti nastavljanja optimalne intenzitete laserskega žarka smo implementirali avtomatski proces, katerega algoritem temelji na analizi distribucije svetlobe zajetega simetričnega vzorca. Čeprav skeniranje simetričnega vzorca poveča robustnost na površinske napake ter optične lastnosti merjenega materiala, je za doseganje visokih točnosti merjenja potrebno ponovljivo izračunati središče zajetega vzorca. Le-to, enako kot v primeru projekcije pike, posredno določa oddaljenost predmeta glede na referenčno točko. Simetrija zajetega vzorca kljub potencialnim popačitvam ter celo delnimi prekinitvami omogoča zadostno količino informacij za izračun središča. Robusten izračun središča smo dosegli preko metode dvo-koračnega prilagajanja krivulj, kjer v prvem koraku na radialne profile zajetega vzorca prilagodimo Gaussove krivulje, v drugem koraku pa na točke vrhov prilagojenih Gaussovih krivulj prilagodimo elipso. Opisani postopek zmanjšuje občutljivost na spremembo kvalitete zajetega vzorca ter zvišuje robustnost merjenja. Podpovršinsko sipanje, ki ga je možno opaziti pri merjenju polprosojnih materialov, občutno vpliva na merilni rezultat. Za odpravljanje vpliva le-tega smo implementirali kompenzacijsko metodo, ki temelji na simetričnosti zajetega vzorca. Metodo smo zasnovali v povezavi z rezultati analize vpliva podpovršinskega sipanja na distribucijo intenzitete svetlobe v zajetem vzorcu. Razvoj in validacija merilnega sistema sta potekala na komercialni napravi za lasersko strukturiranje LPKF ProtoLaser U3, na katerem je tudi implementiran. Merilna metoda je verificirana preko primerjalnih meritev z referenčnim kontaktnim merilnikom premika. Poleg tega smo merilni sistem implementirali in verificirali na sorodni napravi za lasersko strukturiranje PKF ProtoLaser S v1.3, ki namesto UV laserskega žarka za namene strukturiranja uporablja IR valovno dolžino. Uporaba le-te v merilne namene ni mogoča, zato smo na tej napravi za merjenje uporabili vgrajeni rdeči kazalnik. Eksperimentalni rezultati kažejo, da je merilni sistem robusten na spreminjanje intenzitete laserskega žarka ter omogoča merjenje materialov z različnimi optičnimi lastnostmi z merilnim pogreškom nižjim od 50 μm na vseh merjenih materialih. Dodatno smo v programskem okolju Matlab preko simulacije opravili študijo vpliva optičnih popačitev zajetega signala na merilno negotovost. S tem postopkom smo razklopili merilno negotovost zaradi motenj v zajemu signala od temeljnih napak merilnega algoritma. Generirali smo tri različne optimalne vhodne vzorce, ter preko simulacije različnih nepravilnosti v zajemu signala analizirali odvisnost merilnega pogreška od pozicije začetnega središča. Rezultati simulacije dokazujejo, da kvaliteta vhodnega signala opazno vpliva na merilni rezultat.

Language:Slovenian
Keywords:laserska triangulacija, skeniranje simetričnega vzorca, kompenzacija podpovršinskega sipanja, točno merjenje premika, industrijska optična metrologija, algoritmi robustnega računanja središča
Work type:Doctoral dissertation
Organization:FE - Faculty of Electrical Engineering
Year:2015
PID:20.500.12556/RUL-73473 This link opens in a new window
COBISS.SI-ID:11058516 This link opens in a new window
Publication date in RUL:18.11.2015
Views:4273
Downloads:1032
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:PRECISE LASER TRIANGULATION WITH SYMMETRICAL PATTERN SCANNING ON OBJECTS WITH VARIOUS OPTICAL PROPERTIES
Abstract:
The doctoral thesis presents a custom-designed laser triangulation based metrology system which enables high precision surface displacement measurement of various material types with a single sensor configuration. Laser structuring enables rapid and precise prototype manufacturing which is widely used in the field of electronics and photovoltaics. The process utilizes a tightly focused laser beam with an appropriate wavelength and structuring is achieved by deflecting the laser beam over the material surface. Laser beam divergence, which is governed by the used optical elements, defines the offset from the laser focus plane with an appropriate beam diameter and intensity which satisfy the manufacturing tolerances. Thus, there exists a direct connection between the quality of the manufactured sample and the precision of positioning the material surface regarding the laser focus plane which requires a robust displacement measurement system. Commercially available contact, as well as contactless displacement sensors are not suitable for usage in the laser structuring application. This is because a fixed vacuum-safety chamber is used during the laser structuring process which removes the excess material and protects from laser radiation. In addition, the displacement measurement needs to be conducted in the center of the laser processing field without occluding the laser beam. In order to satisfy the aforementioned requirements we developed a custom contactless displacement sensor which utilizes an appropriately intensity regulated built-in laser source and an additional camera for acquiring the reflected light. We mounted the camera outside the vacuum-safety chamber, thus not limiting the laser processing filed. The use of a high-quality UV laser beam, which is primarily used for structuring, presents a novelty. In addition to its high pointing stability and homogeneous beam intensity distribution it enables measurement of transparent materials which present the biggest limitation for commercial laser triangulation sensors. The usage of a UV laser beam is therefore appropriate as the majority of transparent materials show high absorption of UV light. The precision of displacement calculation is strongly affected by optical properties and various irregularities of the measured surface as the measurement result is obtained indirectly from acquired signal centroid detection. We decreased the sensitivity of the measurement to the mentioned problems by projecting a symmetrical pattern which increases the active measurement area, thus reducing the effects of local surface irregularities. We implemented symmetrical pattern projection by scanning a laser dot around a closed trajectory where the scanning speed needs to be adequately high. This step introduces and averaging effect of the light intensity distribution across the pattern, as well as reduces the measurement uncertainty due to speckle noise. In order to robustly measure various material types the intensity of the laser beam needs to be regulated appropriately regarding the optical properties of the measured surface and ambient factors. This process must show high repeatability and objectiveness with no external interaction, thus it has to be automated. The algorithm for setting the optimum laser beam intensity is based on analysis of the acquired symmetrical pattern light distribution. Even though symmetrical pattern scanning increases robustness to surface irregularities and optical properties of the measured material, repeatable centroid detection of the acquired pattern is required for achieving high measurement precision. This information, equally as in projecting a dot, defines the object surface displacement regarding a reference point. The acquired pattern symmetry offers adequate information for centroid calculation despite potential deformations and even partial interruptions in the pattern. We achieved robust centroid calculation by implementing the double curve fitting algorithm (DCF algorithm). Gaussian curves are fitted to radial cross sections of the acquired pattern in the first step, while in the second step, an ellipse is fitted to positions of the fitted Gaussian curve maximums. This process noticeably decreases the measurement dependence on variations in acquired pattern quality, thus increasing the measurement robustness. Subsurface scattering, which can be noticed while measuring translucent materials, has a noticeable effect on the measurement result. Therefore, we implemented a compensation method which is based on the pattern symmetry property. The method was designed in reference to verification results of the effect of subsurface scattering on light intensity distribution of the acquired pattern. A commercial laser structuring system, the LPKF ProtoLaser U3, was used as a test platform for designing and validating the measurement system. We verified the measurement method by conducting various experiments and comparing them to a reference contact displacement sensor. In addition, we implemented and verified the measurement system on a related laser structuring device, the LPKF ProtoLaser S v1.3, which utilizes an IR laser beam instead of a UV laser beam as a working tool. The IR laser beam provides limited possibilities for metrology purposes, hence a built-in laser pointer is used instead. Results of the conducted experiments clearly show that the measurement system proves robust to laser beam intensity variation and enables repeatable displacement measurement of objects with various optical properties with measurement bias lower than 50 μm for all materials. Additionally, we used a Matlab based simulation to conduct a study of the effects of optical distortions in the acquired pattern on measurement uncertainty. Using this approach we decoupled the measurement uncertainty which arises from interferences in signal acquisition from fundamental uncertainty of the measurement algorithm. We generated three distinct optimal input patterns and used the simulation of various irregularities in pattern acquisition to analyze the relationship between the measurement error and the position of the initial centroid. The simulation results clearly indicate that the measurement results are highly affected by the quality of the acquired pattern.

Keywords:laser triangulation, symmetrical pattern scanning, subsurface scattering compensation, precise displacement measurement, industrial optical metrology, robust centroid detection algorithms

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back