Details

Lastnosti sintrane zlitine Cu-Fe-Ni-P pred in po toplotni obdelavi : diplomsko delo
ID Balderman, Jan (Author), ID Bizjak, Milan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,50 MB)
MD5: 45AF263C977613DBBDF9C9CD08AEECEF
PID: 20.500.12556/rul/14c93af4-0a84-49d7-a3b3-755d6f22c847

Language:Slovenian
Keywords:metalurgija prahov, vodna atomizacija, stiskanje, sintranje, zlitina Cu-Fe-Ni-P, električni kontakt
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:NTF - Faculty of Natural Sciences and Engineering
Place of publishing:Ljubljana
Publisher:[J. Balderman]
Year:2015
Number of pages:VIII, 45 f.
PID:20.500.12556/RUL-73355 This link opens in a new window
UDC:669
COBISS.SI-ID:1564511 This link opens in a new window
Publication date in RUL:04.11.2015
Views:3024
Downloads:1041
Metadata:XML DC-XML DC-RDF
:
BALDERMAN, Jan, 2015, Lastnosti sintrane zlitine Cu-Fe-Ni-P pred in po toplotni obdelavi : diplomsko delo [online]. Bachelor’s thesis. Ljubljana : J. Balderman. [Accessed 14 June 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=73355
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Keywords:powder metallurgy, water atomization, compression, sitering, Cu-Fe-Ni-P alloy, electric contact

Similar documents

Similar works from RUL:
  1. Automatic image captioning using deep neural networks
  2. Iris recognition using deep learning
  3. Object detection and classification in aquatic environment using convolutional neural networks
  4. DEEP LEARNING METHODS FOR BIOMETRIC RECOGNITION BASED ON EYE INFORMATION
  5. Convolutional neural networks for lesion segmentation in brain magnetic resonance images
Similar works from other Slovenian collections:
  1. Predicting GPS tracks with deep neural networks
  2. Time series classification based on convolutional neural networks
  3. Zaznavanje sentimenta v novicah z globokimi nevronskimi mrežami
  4. The preparation of photos' dataset and its classification using deep neural networks
  5. Prediction of geospatial raster data using convolutional neural networks

Back