izpis_h1_title_alt

Primerjava in testiranje filmskih priporočilnih sistemov
ID BIHAR, TILEN (Author), ID Zaletelj, Janez (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (2,39 MB)
MD5: 0DDF6E52EFCA14AB53DE0E315168364E
PID: 20.500.12556/rul/bac28b46-f7f5-4f9a-9198-8b4260496b8a

Abstract
Diplomsko delo opisuje priporočilne sisteme s poudarkom na uporabniškem pogledu. Pri tem predstavimo tako uporabniško dojemanje priporočilnih sistemov kot tudi sistemsko dojemanje uporabnikov. V prvem delu predstavimo pomen in uporabnost priporočilnih sistemov. Poznavanje zgodovine razvoja priporočilnih sistemov nam omogoča razumevanje današnje pomembnosti. V nadaljevanju si ogledamo težave v delovanju in nadrobno spoznamo razliko med uporabniškimi vidiki in sistemskimi metrikami. V drugem delu primerjamo delovanje obstoječih filmskih priporočilnih sistemov Jinni, TasteKid, MovieLens, Criticker, Rotten Tomatoes, IMDb, Suggest Me Movie, A Good Movie To Watch, Flixter in Metacritic. Izvedemo tudi primerjavo in primer testiranja natančnosti na podlagi RMSE in MAE metrik.

Language:Slovenian
Keywords:priporočilni sistemi, uporabniški pogled, HCI, priporočanje filmov, testiranje natančnosti, RMSE, MAE
Work type:Bachelor thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2015
PID:20.500.12556/RUL-72776 This link opens in a new window
Publication date in RUL:30.09.2015
Views:2116
Downloads:516
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Comparison and evaluation of movie recommender systems
Abstract:
The thesis describes the recommendation systems with an emphasis on user perspective. By this presents both user perception of recommendation systems as well as systemic perception of users. In the first part we present the importance and usefulness of recommendation systems. Knowing the history of the development of recommendation systems allow us to understand it's todays importance. Further we look at the problems in the operation in detail and realize the difference between the user perspective and system metrics. In the second part we compare the functioning of the existing film recommendation systems Jinni, TasteKid, MovieLens, Criticker, Rotten Tomatoes, IMDb, Suggest Me Movie A Good Movie To Watch, Flixter and Metacritic. We perform comparison and example of accuracy testing based on RMSE and MAE metrics.

Keywords:recommendation systems, user perspective, HCI, recommending films, accuracy testing, RMSE, MAE

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back