Details

Weierstrassov izrek in Mittag-Lefflerjev izrek : magistrsko delo
ID Petelin, Nika (Author), ID Slapar, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (405,89 KB)
MD5: 3E24F19E8C426B10CBC918137B56EA48

Abstract
V magistrskem delu s pomočjo Weierstrassovega izreka pokažemo, da lahko vsako celo funkcijo predstavimo kot produkt, iz katerega lahko razberemo ničle funkcije. Prav tako lahko za poljubno zaporedje brez stekališč skonstruiramo holomorfno funkcijo, ki ima ničle vnaprej predpisanih stopenj natanko v točkah iz zaporedja. V nadaljevanju predstavimo Mittag-Lefflerjev izrek, ki nam podobno pove, da lahko skonstruiramo meromorfno funkcijo, ki ima v točkah poljubnega zaporedja brez ponavljanja in brez stekališč vnaprej predpisane končne glavne dele Laurentovega razvoja funkcije. Za konec pa uporabnost dokazanih izrekov pokažemo še na konkretnih primerih.

Language:Slovenian
Keywords:holomorfna funkcija, neskončni produkt, Rungejev izrek, ničle, konvergentnost, faktorizacija, meromorfna funkcija, cela funkcija
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:PEF - Faculty of Education
Publisher:[N. Petelin]
Year:2015
Number of pages:45 str.
PID:20.500.12556/RUL-72740 This link opens in a new window
UDC:51(043.2)
COBISS.SI-ID:10726985 This link opens in a new window
Publication date in RUL:30.09.2015
Views:5382
Downloads:351
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Weierstrass theorem and Mittag-Leffler's theorem
Abstract:
In these thesis we show, using the Weierstrass theorem, that every entire function can be represented as a product of functions, from which we can easily identify zeros of the function. We also show that for any given sequence without accumulation points, we can construct a holomorphic functions with zeros of prescribed order at exactly the points in the sequence. Next we present Mittag-Leffler's theorem, that similarly shows that, for any sequence without repetitions and without accumulation points, we can construct meromorphic functions that have prescribed finite principle Laurent parts at exactly the points in the sequence. In the end, we show the usefulness of proved theorems on concrete examples.

Keywords:Weierstrass theorem

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back