izpis_h1_title_alt

Klasifikacija virusnih zaporedij s strojnim učenjem : diplomsko delo
ID Kopar, Matej (Author), ID Curk, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (991,17 KB)
MD5: 68A22DC833E908C46D20E8AFD51CF636
PID: 20.500.12556/rul/e2a1281e-4116-4e52-b5f2-c2641f8d90a6

Abstract
V diplomskem delu smo uporabili različne metode strojnega učenja za uvrščanje virusnih zaporedij v ustrezne taksonomske skupine. Z dostopanjem do podatkovne zbirke NCBI, ki hrani biološke in biotehnološke podatke, smo najprej sestavili celotno taksonomsko strukturo znanih virusnih zaporedij. Podatke smo ustrezno filtrirali in tako zgradili množico učnih primerov. Nato smo uporabili klasične metode strojnega učenja in metodo strukturiranega napovedovanja in ovrednotili uspešnost napovedovanja v taksonomske skupine. V delu smo preučili, kateri načini opisovanja genomskih zaporedij so najprimernejši. Opis genomskih zaporedij s k-terkami ne zajame vseh podrobnosti genomov, zato so najboljši doseženi rezultati le nekoliko boljši od večinskega klasifikatorja. Predznanje o evolucijski povezanosti taksonomskih skupin nekoliko izboljša napovedi modelov, ki to znanje lahko uporabijo.

Language:Slovenian
Keywords:strojno učenje, klasifikacija, metoda podpornih vektorjev, naključni gozdovi, virusna zaporedja, strukturirano strojno učenje
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FRI - Faculty of Computer and Information Science
Publisher:[M. Kopar]
Year:2015
Number of pages:43 str.
PID:20.500.12556/RUL-72479 This link opens in a new window
COBISS.SI-ID:1536600003 This link opens in a new window
Publication date in RUL:21.09.2015
Views:2411
Downloads:378
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Classification of viral genomes using machine learning
Abstract:
In this diploma thesis our goal was to classify viral sequences into taxonomic groups by using different machine learning methods. We assembled the taxonomic structure by collecting data from NCBI web site. To clean the data we applied several filtering steps. We then evaluated the predictive performance of classical and structured machine learning methods on the task of classification in taxonomy groups. We wanted to determine the most suitable way to describe genomic sequences. Using k-mers to describe the genomic composition yielded poor predictive models, with best performance slightly above the performance of the majority classifier. Methods, which are able to use prior knowledge on the taxonomic relationships between classes, performed slightly better than methods, which did not use such information.

Keywords:machine learning, classification, support vector machine, random forest, viral sequences, structured machine learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back