izpis_h1_title_alt

Ocenjevanje zanesljivosti napovedi skupinskih modelov : magistrsko delo
ID Kariž, Tomaž (Author), ID Demšar, Janez (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (587,41 KB)
MD5: 3836485619EF3C3B6A93274AD5A112D0
PID: 20.500.12556/rul/f1283b3e-65a2-4af6-83ab-d711bc0154dd

Abstract
V današnjem svetu je zanesljivost napovedovanja zelo pomembna, predvsem na področjih, kot sta recimo zdravstvo in finance, kjer ne bi radi napovedali česa, v kar nismo dovolj prepričani. V strojnem učenju se za reševanje teh problemov raziskuje metode, ki bi nam skušale oceniti, kako zanesljive so naše napovedi. Pri ocenjevanju zanesljivosti napovedi obstajata dve vrsti metod: takšne, ki se specializirajo za točno določen model in takšne, ki ne predpostavljajo vnaprej vrste modela. Prve lahko upoštevajo dodatne informacije pri določanju zanesljivosti, saj lahko uporabijo parametre, ki so specifični za model, kot dodatno informacijo. Druge pa imajo to lastnost, da delujejo na vseh modelih. V delu predstavimo nekaj novih metod, ki delujejo na skupinskih modelih, torej spadajo med tiste, ki so specifične za določen model. Metode delujejo tako na klasifikacijskih kot tudi na regresijskih podatkovnih množicah. Uspešnost metod ovrednotimo s Pearsonovim korelacijskim koeficientom v primeru regresijskih problemov in Wilcoxon-Mann-Whitneyevo statistiko v primeru klasifikacijskih. Razvite metode primerjamo z že obstoječimi in rezultate prikažemo z grafom rangov kritične razdalje.

Language:Slovenian
Keywords:strojno učenje, ocenjevanje zanesljivosti, zanesljivost napovedi, skupinski modeli
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Publisher:[T. Kariž]
Year:2015
Number of pages:57 str.
PID:20.500.12556/RUL-72417 This link opens in a new window
COBISS.SI-ID:1536493251 This link opens in a new window
Publication date in RUL:16.09.2015
Views:1293
Downloads:308
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Reliability estimation of ensemble model predictions
Abstract:
In today's world, the reliability of a prediction is very important, especially in areas such as health and finance, where we do not want to make predictions that are not sufficiently reliable. To solve these problems in the context of machine learning, methods are being researched that assess the reliability of predictions. There are two types of methods: those specialized for a specific model and those who do not presume in advance the model type. The first may take into account additional information in determining the reliability, because they can use the parameters that are specific to the model as additional information. Others, however, are applicable to all models. In this work, we present some methods that operate on ensemble models, therefore, they are among those that are specific to a particular model. Methods operate on both the classification as well as regression datasets. Performance of methods is evaluated by Pearson correlation coefficient in the case of regression problems and Wilcoxon-Mann-Whitney statistics in the case of classification. The developed methods are compared with existing ones. We also show the results using critical distance diagrams.

Keywords:machine learning, reliability assessment, prediction reliability, ensemble models

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back