izpis_h1_title_alt

Gručenje umetniških slik na podlagi njihovih značilnic
Vesel, Nejc (Author), Šajn, Luka (Mentor) More about this mentor... This link opens in a new window, Solina, Franc (Co-mentor)

.pdfPDF - Presentation file, Download (4,01 MB)
MD5: 786ABE7FA47618A03B7712B73E870321

Abstract
V tej diplomski nalogi želimo preizkusiti metodo, ki nam omogoči, da s pomočjo računalniške analize sliko pripišemo določenemu slikarju. Testiramo dva načina. Pri prvem pristopu želimo identificirati slikarja glede na način, s katerim preslika človeške obrazne poteze iz fotografije na naslikan portret. Zanima nas, ali so razlike v obraznih razmerjih na fotografiji in sliki statistično pomembne. Pri drugi metodi vsako sliko opišemo z vektorjem značilnic. Značilnice obsegajo barvo, teksturo in dimenzije slike, katerih kombinacija tvori vektor značilnic. Princip testiramo na 3 slikarjih z različnimi stili. Za vsakega od njih imamo množico desetih testnih slik. Zanima nas, ali lahko z gručenjem sliko pravilno pripišemo slikarju samo na podlagi teh vektorjev značilnic.

Language:Slovenian
Keywords:računalniški vid, umetnost, detekcija obraza, primerjava umetniških slik, klasifikacija, klasifikacija umetnikov
Work type:Bachelor thesis/paper (mb11)
Organization:FRI - Faculty of computer and information science
Year:2015
Views:747
Downloads:335
Metadata:XML RDF-CHPDL DC-XML DC-RDF
 
Average score:(0 votes)
Your score:Voting is allowed only to logged in users.
:
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Secondary language

Language:English
Title:Artwork classification based on image features
Abstract:
In this thesis we are trying to discover a method that allows us to attribute a painting to a particular artist with the help of image analysis. We are testing two methods. In the first one, we are trying to identify the style of a painter by analysing the way in which he translates a human face from a photograph into a painting. We are testing whether the differences on facial proportions in photographs and paintings are statistically significant. With the other method, we describe every painting with a set of features. The features look at the image color, texture and dimensions to form a feature vector. We test this on 10 pictures for each of the 3 painters with different styles. We are trying to test, whether we can correctly attribute these paintings to a painter just with these feature vectors.

Keywords:computer vision, art, face detection, artwork comparison, classification, artist classification

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back