izpis_h1_title_alt

Napovedovanje optimalnega povezanega spletnega članka z MAB pristopom
ID HRIBERNIK, ANDRAŽ (Author), ID Lavbič, Dejan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (903,75 KB)
MD5: 78C3454ED742DC11F2E5F6DDE3DEE957
PID: 20.500.12556/rul/f95ba08e-e845-42f1-8aac-0da33fc4944f

Abstract
Cilj magistrske naloge je bil zasnovati in preizkusiti inovativen pristop za izbiro optimalne spletne novice glede na trenutno brano novico. Pomemben faktor pri izbiri našega pristopa je bilo dejstvo, da velikokrat v realnem scenariju nimamo podatkov o uporabnikih in njihovih preferencah. Zaradi tega smo za reševanje omenjenega problema uporabili Multi-armed bandit pristop. Primerjavo različnih MAB algoritmov smo naredili na problemu Jackpot, ki je bil zasnovan v sklopu Celtrinega programerskega izziva. Osnovni problem pa smo simulirali in evalvirali na realnih podatkih enega izmed ponudnikov priporočil povezane vsebine. Obstoječ priporočilni sistem smo poskušali izboljšati tako, da smo prerazporedili podobne novice trenutno brani novici. Na ta način so predhodno najboljše priporočene novice bile priporočene najvišje, hkrati pa smo vseskozi raziskovali potencialno še boljše novice. V magistrski nalogi smo preverili, ali je smiselno upoštevati pod katero novico je priporočena novica prikazana, ali je možno aproksimirati stopnjo odzivnosti s pomočjo vsebinsko sorodnih priporočilnih tokov in ali dosežemo boljše rezultate, če z Bayevsovskim pristopom aproksimiramo začetne vrednosti parametrov beta distribucije. Naš najbolj obetaven pristop je povprečno pozicijo priporočila izboljšal za približno 40% glede na naključno razporeditev vsebinsko sorodnih priporočil.

Language:Slovenian
Keywords:priporočilni sistemi, Multi-Armed Bandit algoritmi, Randomised Probability Matching, aproksimacija stopnje odzivnosti (CTR)
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2015
PID:20.500.12556/RUL-72109 This link opens in a new window
Publication date in RUL:27.08.2015
Views:1405
Downloads:492
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Predicting optimal related web article with Multi Armed Bandit approach
Abstract:
The main purpose of this master thesis was to develop and evaluate innovative approach for selection of optimal related web article. We often do not have access to data about user's profiles and their preferences. Therefore, these settings have an important influence to our research. Consequently, we decided to use Multi-Armed bandit approach to deal with described settings. Comparison of different MAB algorithms has been done on Jackpot problem, which was designed for Celtra programming challenge. The main research problem has been simulated and evaluated on a real data obtained from a provider of related web content. We tried to improve existing recommendation system with reordering similar news to currently read one. Using this approach, the most interesting news have been recommended on top positions and the most promising news have been explored as well. In this master thesis, we tried to answer to the following questions: does it make sense to take into account statistics of recommended news in context of every news stream separately; is it possible to approximate click-through rate using content-related recommendation streams; could we achieve better results, if we approximate initial input parameters of beta distribution using Bayesian approach. Our most promising method has achieved more than 40% average position improvement regarding random selection strategy of content-related recommendations.

Keywords:Recommendation systems, Multi-Armed Bandit algorithms, Randomised Probability Matching, Approximation of Click-Through Rate

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back