izpis_h1_title_alt

Razvoj testnega mesta za nedestruktivno testiranje z zvočno emisijo in strojnim učenjem
ID FLANDER, PRIMOŽ (Author), ID Beguš, Samo (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (13,06 MB)
MD5: 56C754B3152A720B1A9E38E69C5C33E4
PID: 20.500.12556/rul/7508f334-93eb-4560-b0f5-502a4941759a

Abstract
V podjetju Kolektor d.o.o. se je pojavila potreba po celovitem testiranju rotorjev bencinskih črpalk, zato je bil glavni namen magistrske naloge razvoj testnega mesta, ki bi omogočalo odkrivanje napak rotorjev. Ker rotorjev pri testu nismo smeli uničiti, smo posegali po nedestruktivnih metodah testiranja. Dve ključni metodologiji, ki smo jih pri razvoju testnega mesta uporabljali, sta resonančna analiza in strojno učenje. Z uporabo zvočne emisije smo testirali več vrst rotorjev in magnetov. Merjence smo mehansko vzbujali in zajemali njihov odziv z mikrofonom. V programskem okolju Labview smo razvili program, ki s pomočjo Fourierjeve transformacije izračuna frekvenčni spekter merjencev in iz položaja resonančnih frekvenc oceni njihovo kvaliteto. Testno mesto smo nadgradili s strojnim učenjem, ki smo ga realizirali s programom Weka. S tem smo poenostavili nastavljanje parametrov in omogočili uporabo testnega mesta neizkušenemu operaterju. Rezultati kažejo, da je metoda zvočne emisije primerna za testiranje rotorjev bencinskih črpalk. Testirali smo več vrst rotorjev in magnetov ter ugotovili, da izbrana metoda ni ustrezna za vse vrste merjencev. Vzrok za to so neugodna oblika merjencev in premalo izrazite napake. Delo smo zaključili s praktično izvedbo nadzora kakovosti v proizvodnem procesu.

Language:Slovenian
Keywords:nedestruktivno testiranje, zvočna emisija, zvok, frekvenčna analiza, strojno učenje
Work type:Master's thesis/paper
Organization:FE - Faculty of Electrical Engineering
Year:2015
PID:20.500.12556/RUL-72078 This link opens in a new window
Publication date in RUL:21.08.2015
Views:1919
Downloads:454
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Development of a test bench for non-destructive acoustic emission testing with machine learning
Abstract:
The thesis addresses development of a test bench that would enable the discovery of rotor flaws. Since the rotors were not to be destroyed during the testing, non-destructive testing methods were opted for. Two key methodologies used during the development of the test bench were resonance frequency analysis and machine learning. Multiple types of rotors and magnets were tested with the use of acoustic emission. The test samples were stimulated and their response was received with a microphone. A program which calculates the frequency spectrum of the measured units with the help of Fourier transform and estimates their quality from the position of resonant frequencies was developed in the Labview. The test bench was upgraded with the use of machine learning, which was realised using the Weka software. The results show that the acoustic emission method is appropriate for the testing fuel pump rotors. Multiple types of rotors and magnets were tested, discovering that the chosen method is not appropriate for all types of test samples. The reasons for this result are unfavourable shape of the measured units and too indistinctive flaws.The work was concluded by practically carrying out quality control in the production process.

Keywords:non-destructive testing, acoustic emission, sound, frequency analysis, machine learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back