Details

Vpliv barvanja z reaktivnimi barvili na adsorpcijo kompozitnih nanodelcev Ag/TiO2 : diplomsko delo
ID Flajs, Nevenka (Author), ID Gorjanc, Marija (Mentor) More about this mentor... This link opens in a new window, ID Kert, Mateja (Comentor)

.pdfPDF - Presentation file, Download (1017,64 KB)
MD5: 7B0D4E6EECB1705C50D677B7C608899C
PID: 20.500.12556/rul/60759d1d-3fd5-46ea-a3e2-a898379bd01a

Language:Slovenian
Keywords:kompozitni nanodelci, Ag/Ti02, bombaž, reaktivno barvilo, adsorpcija
Work type:Undergraduate thesis
Organization:NTF - Faculty of Natural Sciences and Engineering
Place of publishing:Ljubljana
Publisher:[N. Flajs]
Year:2015
Number of pages:X, 41 f.
PID:20.500.12556/RUL-72013 This link opens in a new window
UDC:677
COBISS.SI-ID:3115632 This link opens in a new window
Publication date in RUL:13.08.2015
Views:2777
Downloads:473
Metadata:XML DC-XML DC-RDF
:
FLAJS, Nevenka, 2015, Vpliv barvanja z reaktivnimi barvili na adsorpcijo kompozitnih nanodelcev Ag/TiO2 : diplomsko delo [online]. Bachelor’s thesis. Ljubljana : N. Flajs. [Accessed 31 March 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=72013
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:The Influence dyeing with reactive dyes on adsorption composite Ag/Tio2

Similar documents

Similar works from RUL:
  1. Long-term object tracking using region proposals
  2. Determining scene illumination in augmented reality
  3. Object tracking by segmentation and color depth image prediction
  4. Using convolutional neural networks to reconstruct ellipsoids out of a single image
  5. Detekcija uhljev s konvolucijskimi nevronskimi mrežami
Similar works from other Slovenian collections:
  1. Adversarial perturbation on neural network image recognition using an evolutionary algorithm
  2. Food recognition from digital images using convolutional neural networks
  3. Person age estimation based on digital images using convolutional neural networks
  4. Uncalibrated visual servo control with neural network
  5. Image style transfer using transfer learning and neural networks

Back