izpis_h1_title_alt

Maksimalni pretoki na omrežjih : diplomsko delo
ID Urh, Andreja (Author), ID Šparl, Primož (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/id/eprint/2930 This link opens in a new window

Abstract
V diplomskem delu obravnavamo problem iskanja maksimalnega pretoka na omrežjih. Gre za problem, ki se v različnih oblikah pojavlja v raznih realnih situacijah. Nekatere takšne primere predstavimo tudi v diplomskem delu. Na začetku diplomskega dela predstavimo problem maksimalnega pretoka in pokažemo, da ima tak problem vedno optimalno rešitev. Vpeljemo pojem minimalnega reza in obravnavamo njegovo povezavo s problemom maksimalnega pretoka. V drugem delu diplomskega dela obravnavamo nekatere najbolj znane algoritme za iskanje maksimalnega pretoka. Najprej predstavimo Ford - Fulkersonov algoritem, nato pa se posvetimo predvsem Edmonds - Karpovemu in Goldberg - Tarjanovemu algoritmu. Pri vsakem izmed njiju analiziramo časovno zahtevnost, pomembne lastnosti in s pomočjo konkretnih primerov prikažemo njuno delovanje.

Language:Slovenian
Keywords:maksimalen pretok, minimalen rez, Edmonds-Karpov algoritem, Goldberg-Tarjanov algoritem, časovna zahtevnost
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Publisher:[A. Urh]
Year:2015
Number of pages:X, 61 str.
PID:20.500.12556/RUL-71851 This link opens in a new window
UDC:519.1(043.2)
COBISS.SI-ID:10636361 This link opens in a new window
Publication date in RUL:29.07.2015
Views:2740
Downloads:336
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Maksimum flows in networks
Abstract:
In this diploma thesis the maximum flow problem is presented and investigated. Instances of this problem can in various practical situations. Some of these examples are presented in the thesis. The maximum flow problem is introduced and it is shown, that it always has an optimal solution. The concept of a minimal cut is defined and its connection to the maximum flow problem is investigated. In the second part of the diploma thesis some of the well known algorithms for searching the maximum flow are treated. First the Ford - Fulkerson algorithm is presented, than we concentrate mostly on the Edmonds - Karp algorithm and Goldberg - Tarjan algorithm. For each of these two algorithms the time complexity and the important characteristics are analyzed. Their operation is illustrated with a few concrete examples.

Keywords:maximum flow

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back