Details

Klinični pomen določanja tumorskega označevalca NMP22 pri raku sečnega mehurja : diplomska naloga
ID Tripunović, Andrijana (Author), ID Osredkar, Joško (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://www.ffa.uni-lj.si/fileadmin/datoteke/Knjiznica/diplome/2009/Tripunovic_Andrijana_dipl_nal_2009.pdf This link opens in a new window

Language:Slovenian
Keywords:rak sečnega mehurja, tumorski označevalec, NMP22, diagnostika, klasifikacija TNM, etiologija
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:FFA - Faculty of Pharmacy
Place of publishing:Ljubljana
Publisher:[A. Tripunović]
Year:2009
Number of pages:43 f.
PID:20.500.12556/RUL-70929 This link opens in a new window
UDC:616
COBISS.SI-ID:2581361 This link opens in a new window
Publication date in RUL:10.07.2015
Views:1843
Downloads:824
Metadata:XML DC-XML DC-RDF
:
TRIPUNOVIĆ, Andrijana, 2009, Klinični pomen določanja tumorskega označevalca NMP22 pri raku sečnega mehurja : diplomska naloga [online]. Bachelor’s thesis. Ljubljana : A. Tripunović. [Accessed 30 March 2025]. Retrieved from: http://www.ffa.uni-lj.si/fileadmin/datoteke/Knjiznica/diplome/2009/Tripunovic_Andrijana_dipl_nal_2009.pdf
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Clinical application of NMP22 in the management of bladder cancer

Similar documents

Similar works from RUL:
  1. Long-term object tracking using region proposals
  2. Determining scene illumination in augmented reality
  3. Object tracking by segmentation and color depth image prediction
  4. Using convolutional neural networks to reconstruct ellipsoids out of a single image
  5. Detekcija uhljev s konvolucijskimi nevronskimi mrežami
Similar works from other Slovenian collections:
  1. Adversarial perturbation on neural network image recognition using an evolutionary algorithm
  2. Food recognition from digital images using convolutional neural networks
  3. Person age estimation based on digital images using convolutional neural networks
  4. Uncalibrated visual servo control with neural network
  5. Image style transfer using transfer learning and neural networks

Back