Details

Lastne vrednosti grafa : diplomsko delo
ID Bolta, Sandra (Author), ID Šparl, Primož (Mentor) More about this mentor... This link opens in a new window

URLURL - Presentation file, Visit http://pefprints.pef.uni-lj.si/id/eprint/2668 This link opens in a new window
.pdfPDF - Presentation file, Download (1,20 MB)
MD5: 2C9B88D126AFC272818A5C5278D358D2

Abstract
V diplomskem delu obravnavamo linearne teorijo grafov. Zanimajo nas predvsem lastne vrednosti tako imenovanih matrik sosednosti danega grafa. V ta namen so v diplomskem delu predstavljeni tudi osnovni pojmi in nekateri rezultati linearne algebre, ter krajši uvod v teorijo grafov. Predstavljeni so pojmi matrike sosednosti, lastnih vrednosti ter spektra danega grafa. Obravnavana so vprašanja kako se lastnosti grafa odražajo na njegovem spektru. Izračunani so tudi spektri znanih družin grafov.

Language:Slovenian
Keywords:teorija grafov, matrika sosednosti, spekter grafa, standardne družine grafov
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Publisher:[S. Bolta]
Year:2014
Number of pages:34 str.
PID:20.500.12556/RUL-69252 This link opens in a new window
UDC:519.17(043.2)
COBISS.SI-ID:10388297 This link opens in a new window
Publication date in RUL:10.07.2015
Views:1739
Downloads:351
Metadata:XML DC-XML DC-RDF
:
BOLTA, Sandra, 2014, Lastne vrednosti grafa : diplomsko delo [online]. Bachelor’s thesis. S. Bolta. [Accessed 30 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=69252
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Eigenvalues of a graph
Abstract:
In this BSc thesis we deal with matrix graph theory. We are interested primarily in the eigenvalues of the so-called adjacency matrix of a given graph. Because of that, we present the basic concepts and some basic results from linear algebra and a short introduction to a graph theory. We introduce the concepts of adjacency matrices, eigenvalues and the spectrum of a given graph. We investigate how the properties of a given graph reflect on its spectrum. For the well-known families of graphs we calculated their spectra.


Similar documents

Similar works from RUL:
  1. Eigenvalues of a graph
  2. Combinatorial matrix thoery
  3. Algoritmi nad grafi - standardna in algebrska implementacija
  4. Some results from algebraic graph theory
  5. Graph decompositions
Similar works from other Slovenian collections:
  1. Graph energy
  2. Q-polynomial distance-regular graphs with a [sub] 1 [equal] 0 and a [sub] 2 [not equal] 0
  3. Integral graphs
  4. On a version of the spectral excess theorem
  5. On 12-regular nut graphs

Back