Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Lastne vrednosti grafa : diplomsko delo
ID
Bolta, Sandra
(
Author
),
ID
Šparl, Primož
(
Mentor
)
More about this mentor...
URL - Presentation file, Visit
http://pefprints.pef.uni-lj.si/id/eprint/2668
PDF - Presentation file,
Download
(1,20 MB)
MD5: 2C9B88D126AFC272818A5C5278D358D2
Image galllery
Abstract
V diplomskem delu obravnavamo linearne teorijo grafov. Zanimajo nas predvsem lastne vrednosti tako imenovanih matrik sosednosti danega grafa. V ta namen so v diplomskem delu predstavljeni tudi osnovni pojmi in nekateri rezultati linearne algebre, ter krajši uvod v teorijo grafov. Predstavljeni so pojmi matrike sosednosti, lastnih vrednosti ter spektra danega grafa. Obravnavana so vprašanja kako se lastnosti grafa odražajo na njegovem spektru. Izračunani so tudi spektri znanih družin grafov.
Language:
Slovenian
Keywords:
teorija grafov
,
matrika sosednosti
,
spekter grafa
,
standardne družine grafov
Work type:
Bachelor thesis/paper
Typology:
2.11 - Undergraduate Thesis
Organization:
PEF - Faculty of Education
Publisher:
[S. Bolta]
Year:
2014
Number of pages:
34 str.
PID:
20.500.12556/RUL-69252
UDC:
519.17(043.2)
COBISS.SI-ID:
10388297
Publication date in RUL:
10.07.2015
Views:
1737
Downloads:
351
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
BOLTA, Sandra, 2014,
Lastne vrednosti grafa : diplomsko delo
[online]. Bachelor’s thesis. S. Bolta. [Accessed 30 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=69252
Copy citation
Share:
Secondary language
Language:
English
Title:
Eigenvalues of a graph
Abstract:
In this BSc thesis we deal with matrix graph theory. We are interested primarily in the eigenvalues of the so-called adjacency matrix of a given graph. Because of that, we present the basic concepts and some basic results from linear algebra and a short introduction to a graph theory. We introduce the concepts of adjacency matrices, eigenvalues and the spectrum of a given graph. We investigate how the properties of a given graph reflect on its spectrum. For the well-known families of graphs we calculated their spectra.
Similar documents
Similar works from RUL:
Searching for similar works...
Similar works from other Slovenian collections:
Back