Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Topološka obdelava slik
ID
CERAR, MATJAŽ
(
Author
),
ID
Mramor Kosta, Nežka
(
Mentor
)
More about this mentor...
,
ID
Virk, Žiga
(
Comentor
)
PDF - Presentation file,
Download
(1005,03 KB)
MD5: CD16C2A2DBCB99D4EA6E349FD7B0FAEF
PID:
20.500.12556/rul/c5e41837-5c71-414d-a23c-0011f248dd23
Image galllery
Abstract
V diplomskem delu si ogledamo implementacijo topološkega pristopa k analizi digitalnih 2-dimenzionalnih slik. Najprej predstavimo dva načina, kako sliko brez izgube informacij poenostavimo in pripravimo, da je primerna za nadaljnje algoritme. Obdelano sliko nato predstavimo kot topološko strukturo, ki jo imenujemo kubični kompleks. S pomočjo slednjega zgradimo vektorsko polje, ki odraža smeri, kamor funkcijske vrednosti padajo, ter pripadajoči seznam kritičnih celic. Iz obeh dobljenih struktur zgradimo Morsov kompleks, s katerim zajamemo bistvene informacije o posamezni sliki, in izračunamo Bettijeva števila, ki opisujejo ključne značilnosti slike. Za izračun Bettijevih števil prav tako predstavimo dva pristopa. Na koncu sledi še prikaz uporabe, kjer na izbranih primerih slik štejemo svetle objekte.
Language:
Slovenian
Keywords:
diskretna Morsova teorija
,
topološka analiza podatkov
,
kubični kompleks
,
Morsov kompleks
,
Bettijeva števila
Work type:
Undergraduate thesis
Organization:
FRI - Faculty of Computer and Information Science
Year:
2015
PID:
20.500.12556/RUL-42849
Publication date in RUL:
10.07.2015
Views:
1878
Downloads:
336
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
CERAR, MATJAŽ, 2015,
Topološka obdelava slik
[online]. Bachelor’s thesis. [Accessed 3 July 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=42849
Copy citation
Share:
Secondary language
Language:
English
Title:
Topological analysis of images
Abstract:
In this thesis we present an implementation of a topological approach to 2-dimensional digital images. First, we present two methods for simplifying and preparing the image, without loss of information, for further algorithms. We represent the image as a topological structure called a cubical complex. On the cubical complex, a discrete vector field encoding the directions of descent of grey scale values is constructed, together with the corresponding list of critical cells. From these, the Morse complex, which captures the vital information about the image, is built. Using Betti numbers, important features in the image are described. We present two approaches to computing Betti numbers. The thesis concludes with a presentation of how the implemented algorithms can be used for counting bright objects on specific examples of images.
Keywords:
discrete Morse theory
,
topological data analysis
,
cubical complex
,
Morse complex
,
Betti number
Similar documents
Similar works from RUL:
Topološka analiza podatkov o klicih na številko 911 na območju Bostona
Persistence of eigenspaces of an endomorphism
Topological analysis of weather images
Persistent homology and duality
Computing one-dimensional persistent homology in a geodesic metric
Similar works from other Slovenian collections:
Particijska lastnost simplicialnih kompleksov
Curve and surface fairness
A note on a geometric construction of large Cayley graps of given degree and diameter
Möbius transformations and double spirals
A note on a geometric construction of large Cayley graps of given degree and diameter
Back