Details

Topološka obdelava slik
ID CERAR, MATJAŽ (Author), ID Mramor Kosta, Nežka (Mentor) More about this mentor... This link opens in a new window, ID Virk, Žiga (Comentor)

.pdfPDF - Presentation file, Download (1005,03 KB)
MD5: CD16C2A2DBCB99D4EA6E349FD7B0FAEF
PID: 20.500.12556/rul/c5e41837-5c71-414d-a23c-0011f248dd23

Abstract
V diplomskem delu si ogledamo implementacijo topološkega pristopa k analizi digitalnih 2-dimenzionalnih slik. Najprej predstavimo dva načina, kako sliko brez izgube informacij poenostavimo in pripravimo, da je primerna za nadaljnje algoritme. Obdelano sliko nato predstavimo kot topološko strukturo, ki jo imenujemo kubični kompleks. S pomočjo slednjega zgradimo vektorsko polje, ki odraža smeri, kamor funkcijske vrednosti padajo, ter pripadajoči seznam kritičnih celic. Iz obeh dobljenih struktur zgradimo Morsov kompleks, s katerim zajamemo bistvene informacije o posamezni sliki, in izračunamo Bettijeva števila, ki opisujejo ključne značilnosti slike. Za izračun Bettijevih števil prav tako predstavimo dva pristopa. Na koncu sledi še prikaz uporabe, kjer na izbranih primerih slik štejemo svetle objekte.

Language:Slovenian
Keywords:diskretna Morsova teorija, topološka analiza podatkov, kubični kompleks, Morsov kompleks, Bettijeva števila
Work type:Undergraduate thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2015
PID:20.500.12556/RUL-42849 This link opens in a new window
Publication date in RUL:10.07.2015
Views:1878
Downloads:336
Metadata:XML DC-XML DC-RDF
:
CERAR, MATJAŽ, 2015, Topološka obdelava slik [online]. Bachelor’s thesis. [Accessed 3 July 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=42849
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Topological analysis of images
Abstract:
In this thesis we present an implementation of a topological approach to 2-dimensional digital images. First, we present two methods for simplifying and preparing the image, without loss of information, for further algorithms. We represent the image as a topological structure called a cubical complex. On the cubical complex, a discrete vector field encoding the directions of descent of grey scale values is constructed, together with the corresponding list of critical cells. From these, the Morse complex, which captures the vital information about the image, is built. Using Betti numbers, important features in the image are described. We present two approaches to computing Betti numbers. The thesis concludes with a presentation of how the implemented algorithms can be used for counting bright objects on specific examples of images.

Keywords:discrete Morse theory, topological data analysis, cubical complex, Morse complex, Betti number

Similar documents

Similar works from RUL:
  1. Topološka analiza podatkov o klicih na številko 911 na območju Bostona
  2. Persistence of eigenspaces of an endomorphism
  3. Topological analysis of weather images
  4. Persistent homology and duality
  5. Computing one-dimensional persistent homology in a geodesic metric
Similar works from other Slovenian collections:
  1. Particijska lastnost simplicialnih kompleksov
  2. Curve and surface fairness
  3. A note on a geometric construction of large Cayley graps of given degree and diameter
  4. Möbius transformations and double spirals
  5. A note on a geometric construction of large Cayley graps of given degree and diameter

Back