izpis_h1_title_alt

MEDSEBOJNI VPLIV UPORABNIKOV V OMREŽJU MOBILNEGA OPERATERJA
ID GAMULIN, NIKO (Author), ID Tomažič, Sašo (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,37 MB)
MD5: AA6108BA98DA98D28B0139B2F4A00897
PID: 20.500.12556/rul/b3b3cfb0-1f31-4915-b671-0a81609880b8

Abstract
V času stagnacije tržišča je postalo za ponudnike telekomunikacijskih storitev ohranjanje naročnikov bistvenega pomena. Da lahko ponudnik storitev pravočasno prepreči osip, to je prenos naročniškega razmerja h konkurenčnemu ponudniku, mora ugotoviti, kateri uporabniki bodo to storili, in pravočasno ukrepati. Obstoječi modeli za napovedovanje osipa obravnavajo uporabnike kot posameznike, oziroma dodatno upoštevajo podatke, ki se navezujejo na medsebojne povezave med uporabniki. V raziskavi nas je zanimalo, kako na osip vpliva socialno omrežje. S tem namenom smo na podlagi spremenljivk, ki opisujejo opazovane uporabnike v kontekstu socialnega omrežja zgradili model za napovedovanje osipa in relevantnost izbranih spremenljivk potrdili z uspešnostjo napovedi. Zaradi velike količine podatkov o telefonskih povezavah zahteve številnih doslej predlaganih modelov za praktično delovanje presegajo razpoložljivost računalniških virov, ki bi jih lahko ponudnik storitev dodelil za napovedovanje osipa. Vsakršna redukcija kompleksnosti napovednega modela tako v primeru analize celotne populacije v praksi predstavlja nižje zahteve za računalniške zmogljivosti in s tem neposredno nižje stroške. S tem namenom smo predlagali model, ki osip napoveduje na podlagi izbranih spremenljivk, in je bolj preprost od doslej predlaganih modelov. Jedro disertacije je predlog preprostega modela za napovedovanje osipa na podlagi telefonskih povezav in predhodnih prekinitev naročniških razmerij med sosedi posameznega opazovanega uporabnika. Za tak model smo se odločili zato, Vsebina da jasno potrdimo predpostavko, da socialno omrežje vpliva na osip in je letnega mogoče napovedati izključno na podlagi opazovanja parametrov socialnega omrežja. Preprostost utemeljimo tako, da uspešnost predlaganega modela primerjamo s kompleksnejšimi modeli. Primerjava pokaže, da predlagan model dosega primerljive oziroma boljše rezultate od kompleksnejših modelov. Za namene praktične uporabe za sprotno napovedovanje osipa v realnem času predlagamo model, ki temelji na ugotovitvah o pomembnosti socialnega omrežja. Rezultati modela nakazujejo, da je ob sprotni izbiri uporabnikov na dnevni ali tedenski bazi v primeru uporabe predlaganega modela med izbranimi delež takih, ki bi v bližnji prihodnosti prekinili naročniško razmerje bistveno večji kot v primeru naključne izbire.

Language:Slovenian
Keywords:osip, strojno učenje, analiza socialnega omrežja
Work type:Doctoral dissertation
Organization:FE - Faculty of Electrical Engineering
Year:2015
PID:20.500.12556/RUL-30733 This link opens in a new window
COBISS.SI-ID:11000404 This link opens in a new window
Publication date in RUL:24.04.2015
Views:2122
Downloads:429
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:MUTUAL INFLUENCE AMONG USERS IN MOBILE OPERATOR NETWORK
Abstract:
As the telecommunications market has reached the stagnation phase, it has become cruicial for service providers to retain the existing subscribers. In order to prevent the existing subscribers to switch their subscription to competition, i.e. perform churn, the provider has to determine which subscribers will churn in the near future and take appropriate action in order to prevent it. The existing churn prediction models either consider subscribers as individuals or additionaly take into account the data, related to users' interconnections. In this research we have investigated the relevance of social network to churn. Accordingly, based on variables that describe the subscribers in the context of social network, we have built a churn prediction model and con_rmed the relevance of social network with prediction results. Due to large ammount of call connections data, the requirements of existing prediction models surpass the available computer resources that service provider would have to allocate to make predictions on real data. Therefore, due to large ammount of data, the reduction of model complexity represents lower requirements for computer resources which directly reects in lower _nancial expenses. Due to these facts, we have proposed a model for churn prediction which is simpler than the models proposed up to date. The core of the thesis is a proposal of a simple model which predicts churn upon taking into account previous churn among neighbors and their phone call connections to the observed user. We have decided for such model in order to clearly con_rm the assumption that the social network is highly relevant to churn and it is possible to predict churn solely by observing social network parameters. The simplycity is justi_ed with the comparison of the proposed models with existing, more complex models. The comparison reveals that the proposed models achieves comparable or better results than the existing, more complex models. With purpose to make prediction in real time, we propose a model which is based on _ndings related to the importance of social network. The results of the model reveal that in case of using the proposed model to make churn predictions on regular, daily or weekly basis, it is possible to capture considerable higher percentage of subscribers who are going to cancel the subscription plan, compared to random selection.

Keywords:churn, machine learning, social network analysis

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back