izpis_h1_title_alt

Iskanje neželenih interakcij zdravil
ID OGNJENOVIĆ, DEJAN (Author), ID Robnik Šikonja, Marko (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (879,61 KB)
MD5: 32A1BED923F7A55E0233EB55BF291A69
PID: 20.500.12556/rul/5f2d7d8a-2ae8-42e4-98cb-44663bb8b8b0

Abstract
Interakcije zdravil so prepletanja učinkov zdravil, ki lahko povzročijo želene ali škodljive učinke na pacientu. V nalogi smo z orodjem strojnega učenja iskali interakcije zdravil, ki lahko na zdravje bolnikov vplivajo negativno. Naš pristop k reševanju problema temelji na dveh algoritmih strojnega učenja. Pri tem smo upoštevali hierarhiji zdravil in bolezni ter bazo LexiComp. Algoritem posplošenih povezovalnih pravil poskuša s pomočjo hierarhij poiskati pravila, ki poleg osnovnih elementov upoštevajo tudi njihove posplošitve v hierarhiji. Drugi uporabljeni algoritem je iskanje pravil s koristnostno funkcijo, ki uporablja statistične informacije podatkov. Algoritme smo testirali na umetno generiranih podatkih in na realnih podatkih pacientov iz Univerzitetnega kliničnega centra v Ljubljani. Najdena pravila so pregledali farmacevti, ki so jih podrobno analizirali in komentirali. Rezultati algoritmov so obetavni, saj smo odkrili nekaj zanimivih novih pravil in vzorcev.

Language:Slovenian
Keywords:strojno učenje, podatkovno rudarjenje, povezovalna pravila, interakcije, interakcije zdravil, zdravila, hierarhije, LexiComp, generalizacija, ontologije, posplošena povezovalna pravila, povezovalna pravila s funkcijo koristnosti, funkcije koristnosti, hiperkaliemija
Work type:Master's thesis/paper (mb22)
Organization:FRI - Faculty of computer and information science
Year:2014
PID:20.500.12556/RUL-29984 This link opens in a new window
Publication date in RUL:24.10.2014
Views:1326
Downloads:372
Metadata:XML RDF-CHPDL DC-XML DC-RDF
:
Kopiraj citat
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Secondary language

Language:English
Title:Searching for unwanted drug interactions
Abstract:
Drug interactions are interweaving effects between two or more drugs that can have desirable or harmful effects on patients health. In this thesis we for searched harmful drug interactions. Our approach is based on two machine learning algorithms for association rule mining. We use two given hierarchies, one for drugs (ATC), the other for diseases (ICD), and one proprietary interaction database LexiComp. A generalized association rule algorithm tries to find rules that contain basic elements as well as elements from given hierarchies. The second algorithm uses high-utility pattern mining. The utility function was designed to use statistical information from both the data and the hierarchies. Algorithms were tested on artificial data and on a dataset from University Medical Centre Ljubljana. Detected rules were reviewed, analyzed, commented and evaluated by pharmacists. The results are promising as several interesting new rules and patterns are detected.

Keywords:machine learning, data mining, association rules, interactions, drug interactions, drugs, hierarchy, LexiComp, generalization, ontologies, generalized association rules, high utility association rules, utility function, hypercalemia

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back