izpis_h1_title_alt

A Markov random field based autonomous image segmentation
DIMITRIEV, ALEKSANDAR (Author), Kristan, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,19 MB)

Abstract
Segmentacija slik je zelo raziskovano področje, za katero so na voljo številni algoritmi. Naš cilj je segmentacija slike s pomočjo superpikslov na več skladnih delov in na nenadzorovan način. Da bi to dosegli, predlagamo iterativni segmentacijski algoritem. Algoritem predstavlja sliko kot slučajno polje Markova (MRF), katerega vozlišča so superpiksli, ki imajo barvne in teksturne atribute. Superpikslom dodelimo oznake na podlagi njihovih atributov s pomočjo metode podpornih vektorjev (SVM) in že omenjenega MRF in iterativno zmanjšujemo število segmentov. Negotovo segmentacijo po vsaki iteraciji se izboljšuje in rezultat je segmentacija slike na več semantično smiselnih delov, brez pomoči uporabnika. Algoritem je bil testiran na segmentacijsko podatkovno bazo in F ocene so podobne najsodobnejšim algoritmom. Glede fragmentacije slike naš pristop bistveno prekosi stanje tehnike z zmanjšanjem števila segmentov, iz katerih je sestavljen predmet zanimanja.

Language:English
Keywords:segmentacija, metoda podpornih vektorjev, SVM, slučajno polje Markova, MRF, nenadzorovano učenje
Work type:Bachelor thesis/paper (mb11)
Organization:FRI - Faculty of computer and information science
Year:2014
Views:786
Downloads:338
Metadata:XML RDF-CHPDL DC-XML DC-RDF
 
Average score:(0 votes)
Your score:Voting is allowed only to logged in users.
:
Share:AddThis
AddThis uses cookies that require your consent. Edit consent...

Secondary language

Language:Slovenian
Title:Avtonomna segmentacija slik z Markovim slučajnim poljem
Abstract:
Image segmentation is a widely-researched topic with many algorithms available. Our goal is to segment an image, in an unsupervised way, into several coherent parts with the help of superpixels. To achieve that, we propose an iterative segmentation algorithm. The algorithm models the image by a Markov random field, whose nodes are the superpixels, and each node has both color and texture features. The superpixels are assigned labels according to their features with the help of support vector machines and the aforementioned MRF and the number of segments is iteratively reduced. The result is a segmentation of an image into several regions with requiring any user input. The segmentation algorithm was tested on a standard evaluation database, and performs on par with state-of-the-art segmentation algorithms in F-measures. In terms of oversegmentation, our approach significantly outperforms the state of the art by greatly reducing the oversegmentation of the object of interest.

Keywords:segmentation, support vector machines, SVM, Markov random field, MRF, unsupervised learning

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Comments

Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back