izpis_h1_title_alt

Sprotni algoritmi za računanje razdelitve grafa na klike
ID FABIJAN, ALEKSANDER (Author), ID Brodnik, Andrej (Mentor) More about this mentor... This link opens in a new window, ID Nilsson, Bengt J. (Comentor)

.pdfPDF - Presentation file, Download (616,97 KB)
MD5: 60B21CC102D76AFCBFC98965D37FB35B
PID: 20.500.12556/rul/aaec78f4-483c-4d12-9213-515d897aa8be

Abstract
Grupiranje v klike je proces združevanja vozlišč v gruče, za katere velja, da so vsa vozlišča med seboj povezana. V sprotnem (on-line) združevanju celoten graf ni znan vnaprej, ampak je na voljo po eno vozlišče naenkrat. Tista vozlišča, ki so že pridružena gruči, ne morejo biti prestavljena v drugo gručo. Naloga je poiskati takšno razvrstitev vozlišč, ki se od optimalne razvrstitve razlikuje čim manj. V tej diplomski nalogi podamo konstantno zgornjo mejo in algoritem (Lazy) za problem sprotnega združevanja v klike, kjer je cilj poiskati razvrstitev vozlišč s čim več povezavami znotraj gruč (problem Max-ECP). Poleg tega podamo ujemajoči zgornji in spodnji meji za problem sprotnega združevanja v klike, kjer je cilj poiskati razvrstitev s čim manj povezavami med gručami (problem Min-ECP). Za oba problema pokažemo, da naraven (Greedy) pristop vodi k linearni rešitvi. Naša metoda Lazy nudi konstantno tekmovalno razmerje, kar se znatno odraža na grafih z veliko vozlišči.

Language:English
Keywords:analiza konkurenčnosti, grupiranje, sprotni algoritem, aproksimacijski algoritem
Work type:Undergraduate thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2014
PID:20.500.12556/RUL-29432 This link opens in a new window
Publication date in RUL:04.09.2014
Views:2073
Downloads:412
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:Slovenian
Title:Online Algorithms for Graph Partitioning into Cliques
Abstract:
Clique clustering is the problem of partitioning a graph into cliques so that some objective function is optimised. In online clustering the input graph is given one vertex at a time, and vertices that have been previously clustered are not allowed to be separated. The objective is to maintain a clustering that never deviates too far from the optimal offline solution. We give a constant competitive upper bound and a strategy (Lazy) for online clique clustering, where the objective function is to maximise the number of edges inside the clusters (Max-ECP). We also give almost matching upper and lower bounds on the competitive ratio for online clique clustering, where we want to minimise the number of edges between clusters (Min-ECP). In addition, we prove that the greedy method only gives linear competitive ratio for these problems. The research result shows that the proposed constant competitive strategy performs significantly better on bigger graphs than the greedy method.

Keywords:competitive analysis, clustering, online algorithm, approximation algorithm

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back