Details

Projekt armiranobetonskega nadvoza v skladu z EVROKOD standardi : diplomska naloga
ID Anclin, Marko (Author), ID Isaković, Tatjana (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (8,37 MB)
MD5: 053693365045772A4C1B30D5F4F4897C
PID: 20.500.12556/rul/afb42205-5312-47d7-8d86-6abc96b6a9fe

Language:Slovenian
Keywords:gradbeništvo, diplomska dela, VSŠ, armiranobetonske konstrukcije, dimenzioniranje, standardi Evrokod, armaturni načrti
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:FGG - Faculty of Civil and Geodetic Engineering
Place of publishing:Ljubljana
Publisher:[M. Anclin]
Year:2012
Number of pages:XIV, 112 str., 6 pril.
PID:20.500.12556/RUL-27959 This link opens in a new window
UDC:006.77:624.012.45(043.2)
COBISS.SI-ID:5912161 This link opens in a new window
Publication date in RUL:11.07.2014
Views:4330
Downloads:532
Metadata:XML DC-XML DC-RDF
:
ANCLIN, Marko, 2012, Projekt armiranobetonskega nadvoza v skladu z EVROKOD standardi : diplomska naloga [online]. Bachelor’s thesis. Ljubljana : M. Anclin. [Accessed 4 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=27959
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Design of reinforced concrete overpass according to EUROCODE standards
Keywords:graduation thesis, Reinforced concrete construction, design, Eurocode standards, reinforcement plans

Similar documents

Similar works from RUL:
  1. Using synthetic data to train convolutional neural networks for the case of hand detection
  2. Computer vision on embedded devices for natural user interfaces
  3. Long-term object tracking using region proposals
  4. Segmentacija rok za obogateno resničnost
  5. Melt pool detection at wire arc welding
Similar works from other Slovenian collections:
  1. Person age estimation based on digital images using convolutional neural networks
  2. Development of an advanced system for lane detection on GPU platforms
  3. Food recognition from digital images using convolutional neural networks
  4. Time series classification based on convolutional neural networks
  5. The preparation of photos' dataset and its classification using deep neural networks

Back