Details

Hamiltonskost usmerjenih cirkulantov : diplomsko delo
ID Antončič, Iva (Author), ID Šparl, Primož (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (1,20 MB)
MD5: 48E5371181CB0C1AB2FC6F87BCF1D415

Abstract
Usmerjeni cirkulant Circ(n; S) je digraf, katerega točke so elementi ciklične grupe Zn, usmerjena povezava od u do v pa v digrafu obstaja natanko tedaj, ko je v=u+s za nek s iz S. Diplomsko delo obravnava obstoj Hamiltonovih ciklov v usmerjenih cirkulantih, ki imajo izhodno stopnjo 2 ali 3. Hamiltonov cikel digrafa je tak sklenjen sprehod po usmerjenih povezavah digrafa, v katerem vsako točko obiščemo natanko enkrat. Vprašanje hamiltonskosti usmerjenih cirkulantov z izhodno stopnjo 2 je po zaslugi Rankina v celoti rešeno že od leta 1946. Za veliko težji zalogaj so se izkazali usmerjeni cirkulanti z izhodno stopnjo 3. Za nekatere družine obstoj Hamiltonovega cikla znamo dokazati, za nekatere družine znamo dokazati, da ga ni, za veliko večino usmerjenih cirkulantov z izhodno stopnjo 3 pa še nič ne vemo. V diplomskem delu si ogledamo Rankinov rezultat za usmerjene cirkulante z izhodno stopnjo 2 ter dosedanje rezultate za usmerjene cirkulante z izhodno stopnjo 3. Poleg tega s pomočjo računalniškega programa preverimo, kateri usmerjeni cirkulanti z izhodno stopnjo 3 na do vključno 87 točkah imajo Hamiltonov cikel.

Language:Slovenian
Keywords:Cayleyev diagraf, usmerjeni cirkulant, hamiltonskost, Hamiltonov cikel, matematika
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:PEF - Faculty of Education
Place of publishing:Ljubljana
Publisher:[I. Antončič]
Year:2011
Number of pages:V f., 66 str., [12] str. pril.
PID:20.500.12556/RUL-24259 This link opens in a new window
UDC:519.17(043.2)
COBISS.SI-ID:8903753 This link opens in a new window
Publication date in RUL:11.07.2014
Views:2233
Downloads:418
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:On hamiltonicity of circulant digraphs
Abstract:
A circulant digraph Circ(n;\, S) is a digraph with vertex set Zn and arcs from v to v+s for each v in Zn, and s in S. The bachelor thesis deals with existence of Hamilton cycle in circulant digraphs with outdegree 2 or 3. Hamilton cycle of a digraph is a closed walk, which meets every vertex exactly ones. Due to Rankin the hamiltonicity question of circulant digraphs of outdegree 2 is solved since 1946. Circulant digraphs of outdegree 3 have however turned out to be more challenging. There are some families, for which we can prove the existence of a Hamilton cycle and some families, for which we can prove nonexistence of such a cycle, but for most of circulant digraphs of outdegree 3 we know nothing jet. In the bachelor thesis we take a close look at Rankin's result for circulant digraphs of outdegree 2 and previous results that consider circulant digraphs of outdegree 3. Besides that we use computer program to examine the hamiltonicity of circulant digraphs of outdegree 3, that have 87 or less vertices.

Keywords:Cayley digraph, circulant digraph, hamiltonicity, Hamilton cycle, mathematics

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back