Details

Geografske možnosti sonaravne rabe energije in razvoja rekreacije na Kolpi (Vinica - Dragoši) : diplomsko delo
ID Jakovac, Nina (Author), ID Plut, Dušan (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (11,60 MB)
MD5: E5493445E5B88836256F4260B6BC61DA
PID: 20.500.12556/rul/bf354cc3-5576-41f1-99b2-3fe76be1a3e0

Language:Slovenian
Keywords:diplomska dela, geografske diplome, Slovenija, Ljubljana, rekreacija, sonaravni razvoj, energetski viri
Work type:Undergraduate thesis
Typology:2.11 - Undergraduate Thesis
Organization:FF - Faculty of Arts
Place of publishing:Ljubljana
Publisher:[N. Jakovac]
Year:2013
Number of pages:103 f.
PID:20.500.12556/RUL-23768 This link opens in a new window
UDC:379.83+621.22(497.434)
COBISS.SI-ID:51534434 This link opens in a new window
Publication date in RUL:11.07.2014
Views:2053
Downloads:233
Metadata:XML DC-XML DC-RDF
:
JAKOVAC, Nina, 2013, Geografske možnosti sonaravne rabe energije in razvoja rekreacije na Kolpi (Vinica - Dragoši) : diplomsko delo [online]. Bachelor’s thesis. Ljubljana : N. Jakovac. [Accessed 1 April 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=23768
Copy citation
Share:Bookmark and Share

Similar documents

Similar works from RUL:
  1. Object detection and classification in aquatic environment using convolutional neural networks
  2. Semantic segmentation of images for indoor place recognition
  3. Siamese neural network for motion detection in video sequences
  4. Segmentacija rok za obogateno resničnost
  5. A neural network for trench detection based on Lidar elevation model
Similar works from other Slovenian collections:
  1. Time series classification based on convolutional neural networks
  2. Prediction of geospatial raster data using convolutional neural networks
  3. Food recognition from digital images using convolutional neural networks
  4. Person age estimation based on digital images using convolutional neural networks
  5. Person activity recognition from image sequence using convolutional neural networks

Back