Details

Pokojninska reforma v Sloveniji in preimerjava s skandinavskimi državami : diplomsko delo visokošolskega program
ID Pšeničnik, Simona (Author), ID Aristovnik, Aleksander (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (917,98 KB)
MD5: FC542F50FDFE1E9315D85F1A2981C4AB
PID: 20.500.12556/rul/c0c35170-4c06-4c7b-a3bd-d63819750164

Language:Slovenian
Keywords:pokojnine, pokojninsko zavarovanje, reforma, Skandinavija, Slovenija, diplomske naloge
Work type:Bachelor thesis/paper
Typology:2.11 - Undergraduate Thesis
Organization:FU - Faculty of Administration
Place of publishing:Ljubljana
Publisher:[S. Pšeničnik]
Year:2010
Number of pages:X, 71 str.
PID:20.500.12556/RUL-21524 This link opens in a new window
UDC:368.914(497.4:48)(043.2)
COBISS.SI-ID:3510958 This link opens in a new window
Publication date in RUL:11.07.2014
Views:1774
Downloads:231
Metadata:XML DC-XML DC-RDF
:
PŠENIČNIK, Simona, 2010, Pokojninska reforma v Sloveniji in preimerjava s skandinavskimi državami : diplomsko delo visokošolskega program [online]. Bachelor’s thesis. Ljubljana : S. Pšeničnik. [Accessed 17 August 2025]. Retrieved from: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=eng&id=21524
Copy citation
Share:Bookmark and Share

Similar documents

Similar works from RUL:
  1. Object detection and classification in aquatic environment using convolutional neural networks
  2. Recognising people’s age from face images with convolutional neural networks
  3. Video compression using neural networks
  4. Automatic image captioning using deep neural networks
  5. Detekcija uhljev s konvolucijskimi nevronskimi mrežami
Similar works from other Slovenian collections:
  1. Person age estimation based on digital images using convolutional neural networks
  2. Food recognition from digital images using convolutional neural networks
  3. Image style transfer using transfer learning and neural networks
  4. Person activity recognition from image sequence using convolutional neural networks
  5. Lossy image compression using variational autoencoder

Back