Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
Repository of the University of Ljubljana
Open Science Slovenia
Open Science
DiKUL
slv
|
eng
Search
Browse
New in RUL
About RUL
In numbers
Help
Sign in
Details
Položaj OVSE v mednarodnih odnosih : dileme in predlogi reform
ID
Zajc, Tomaž
(
Author
),
ID
Bebler, Anton
(
Mentor
)
More about this mentor...
URL - Presentation file, Visit
http://dk.fdv.uni-lj.si/diplomska/pdfs/zajc-tomaz.pdf
Image galllery
Language:
Slovenian
Work type:
Undergraduate thesis
Typology:
2.11 - Undergraduate Thesis
Organization:
FDV - Faculty of Social Sciences
Place of publishing:
Ljubljana
Publisher:
[T. Zajc]
Year:
2010
Number of pages:
82 f.
PID:
20.500.12556/RUL-19249
UDC:
341.1+341.217:351.78(043.2)
COBISS.SI-ID:
29861725
Publication date in RUL:
11.07.2014
Views:
1616
Downloads:
155
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
ZAJC, Tomaž, 2010,
Položaj OVSE v mednarodnih odnosih : dileme in predlogi reform
[online]. Bachelor’s thesis. Ljubljana : T. Zajc. [Accessed 24 March 2025]. Retrieved from: http://dk.fdv.uni-lj.si/diplomska/pdfs/zajc-tomaz.pdf
Copy citation
Share:
Similar documents
Similar works from RUL:
Recognising people’s age from face images with convolutional neural networks
Detekcija uhljev s konvolucijskimi nevronskimi mrežami
Iris recognition using deep learning
Automatic classification of buildings with deep learning
Automatic image captioning using deep neural networks
Similar works from other Slovenian collections:
Person age estimation based on digital images using convolutional neural networks
Person activity recognition from image sequence using convolutional neural networks
Food recognition from digital images using convolutional neural networks
Recognition of human emotions on digital images using convolutional neural networks
Time series classification based on convolutional neural networks
Back