Details

Modeliranje pomena izrazov verjetnosti
ID Babič, Tilen (Author), ID Žabkar, Jure (Mentor) More about this mentor... This link opens in a new window, ID Štrumbelj, Erik (Comentor)

.pdfPDF - Presentation file, Download (935,29 KB)
MD5: AF0CE31E8A2881237C7B381B8796B05B

Abstract
Izrazi verjetnosti so besede ali besedne zveze, ki se namesto numeričnih vrednosti uporabljajo za izražanje verjetnosti dogodkov, npr. zagotovo, morda in nemogoče. S takimi izrazi se srečujemo vsakodnevno, pri čemer pa jih vsak razume nekoliko drugače. V prizadevanju za bolj zanesljivo razlago so številne stroke sprejele standardizirane slovarje in njihove numerične prevode. Ker pa ljudje intuitivno uporabljamo različne nabore izrazov in težko prezremo lastno interpretacijo, je standardizacija lahko problematična. V magistrskem delu se osredotočimo na alternativno rešitev standardizaciji, kjer preučimo prevod slovarja verjetnostnih izrazov ene osebe v slovar druge osebe. Za modeliranje verjetnostnih izrazov uporabimo funkcije pripadnosti, pri čemer predstavimo novo metodo zajema z žetoni, ki jo primerjamo z uveljavljeno metodo zajema z drsniki. Poleg tega uvedemo novo mero podobnosti med funkcijami pripadnosti, ki za razliko od obstoječih pristopov upošteva celotno porazdelitev funkcije. Analiza podatkov, zbranih v okviru ankete, pokaže, da metoda z žetoni praviloma vodi do ožjih funkcij pripadnosti z izrazitejšimi vrhovi, kar je posebej uporabno pri prevajanju med slovarji. Nasprotno z dosedanjimi raziskavami ugotovimo, da prevod, ki temelji na vsebinsko enakih izrazih, doseže nižjo ceno kot prevod, ki upošteva zaporedje izrazov v slovarju.

Language:Slovenian
Keywords:izrazi verjetnosti, funkcije pripadnosti, študija uporabnikov, Prolific
Work type:Master's thesis/paper
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-177763 This link opens in a new window
Publication date in RUL:06.01.2026
Views:65
Downloads:11
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Modeling the meaning of verbal probabilities
Abstract:
Verbal probabilities are phrases used instead of numerical values to describe the likelihood of events, such as certain, maybe, and impossible. We encounter them daily, yet each person interprets them somewhat differently. To achieve more consistent interpretations, many fields have adopted standardized lexicons and their numerical translations. However, standardization can be problematic because people naturally rely on their own lexicons and cannot easily disregard their personal interpretations. In this thesis, we explore an alternative to standardization by examining how the probability lexicon of one individual can be translated into the lexicon of another. We model verbal probabilities using membership functions and introduce a new elicitation method, chips and bins, which we compare with the commonly used slider-based approach. We also propose a new similarity measure between membership functions that, unlike existing approaches, accounts for the entire distribution of the function. Analysis of data collected through an online survey shows that the chips and bins method generally produces membership functions with narrower breadth and more pronounced peaks, making them particularly useful for translating between lexicons. Contrary to related studies, we also find that translations based on identical phrases outperform translations based on equally ranked phrases.

Keywords:verbal probabilities, membership functions, user study, Prolific

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back