Details

Hibridni digitalni dvojčki za identifikacijo lokaliziranih dinamskih sprememb z metodami strojnega učenja
ID Vrtač, Tim (Author), ID Čepon, Gregor (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (94,59 MB)
MD5: EC28C6E20FB2825FEDA39355C647D25D

Abstract
Doktorska naloga se osredotoča na problem pridobivanja učne množice za identifikacijo poškodovanosti struktur s strojnim učenjem. Izkaže se, da je eksperimentalno pogosto zahtevno zajeti nabor podatkov v katerem je zastopan širok nabor različnih poškodbenih stanj. Na drugi strani, numerični modeli stanje realne strukture popisujejo z omejeno natančnostjo, oviro pa predstavlja tudi visoka računska zahtevnost. V sklopu doktorskega dela je predlagana metodologija, ki temelji na dinamskem podstrukturiranju. Ta omogoča tvorjenje hibridnih modelov, ki odražajo stanje realne strukture in hkrati omogočajo simulacijo različnih poškodbenih scenarijev. Dinamsko podstrukturiranja omogoča posodabljanje numeričnih modelov z eksperimentalnimi podatki, poleg tega pa tudi sklapljanje ter odklapljanje različnih vrst modelov eksperimentalnih, numeričnih in analitičnih), kar omogoča tvorjenje reprezentativnih hibridnih učnih množic. V prvem delu raziskav je bila tvorjena hibridna učna množica oblikovana za namen identifikacije poškodb na spojih laboratorijske strukture, ki pogosto predstavljajo kritična mesta sistema. V drugem delu se osredotočimo na spremljanje stanja kompleksnejših spojev, kjer preko dinamskega podstrukturiranja tvorimo podatkovno množico, prenosljivo med različnimi sestavi. V eksperimentalnem testiranju predlaganih pristopov sta bili uspešno tvorjeni učni množici, ki sta bili uporabljeni za treniranje algoritma za lokalizacijo in določitev obsega poškodb na laboratorijski strukturi ter algoritma, sposobnega ovrednotenja kakovosti kovičenega spoja na osnovi njegovega dinamskega odziva.

Language:Slovenian
Keywords:Nadzor konstrukcijskega stanja, dinamsko podstrukturiranje, digitalni dvojčki, strojno učenje, učna množica, napovedno vzdrževanje
Work type:Doctoral dissertation
Organization:FS - Faculty of Mechanical Engineering
Year:2025
PID:20.500.12556/RUL-177412 This link opens in a new window
Publication date in RUL:23.12.2025
Views:42
Downloads:6
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Hybrid digital twins for identification of localized dynamic modifications using machine learning
Abstract:
The doctoral thesis focuses on the problem of generating training datasets for identifying structural damage using machine learning. It turns out that, experimentally, it is often difficult to capture a dataset that encompasses a wide range of different damage states. On the other hand, numerical models describe the real structural state with limited accuracy, and high computational cost also poses a significant constraint. Within the scope of the doctoral work, a methodology based on dynamic substructuring is proposed. This approach enables the creation of hybrid models that reflect the real state of the structure while allowing the simulation of various damage scenarios. Dynamic substructuring facilitates the updating of numerical models with experimental data, as well as the coupling and decoupling of different types of models (experimental, numerical, and analytical), enabling the formation of representative hybrid training datasets. In the first part of the research, a hybrid training dataset was created for identifying damage in the joints of a laboratory structure, which often represent critical points of the system. The second part focuses on monitoring the condition of more complex joints, where dynamic substructuring is used to generate a dataset transferable across different assemblies. Experimental testing of the proposed approaches resulted in the successful creation of training datasets, which were then used to train an algorithm for localizing and identifying damage in the laboratory structure, as well as an algorithm capable of evaluating the quality of a riveted joint based on its dynamic response.

Keywords:Structural Health Monitoring, Dynamic Substructuring, Digital Twins, Machine Learning, Training Dataset, Predictive Maintenance

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back