Details

Predobdelava podatkov za zagotavljanje varnosti in zasebnosti pri uporabi velikih jezikovnih modelov v gradbeništvu
ID Brelih, Anja (Author), ID Srdič, Aleksander (Author), ID Dujc, Jaka (Author), ID Klinc, Robert (Author)

.pdfPDF - Presentation file, Download (1,08 MB)
MD5: F16C3333FC46715999D88606B44B1ACE
URLURL - Source URL, Visit https://www.zveza-dgits.si/gradbeni-vestnik-dec-2025/ This link opens in a new window

Abstract
Prispevek predstavlja izzive zagotavljanja varstva podatkov pri uporabi velikih jezikovnih modelov (VJM) v delovnih tokovih operativnega gradbeništva. Analizira, kako uspešno obstoječa orodja za prepoznavanje imenskih entitet (angl. Named Entity Recognition, NER) zaznajo in anonimizirajo občutljive informacije v tehničnih gradbenih dokumentih, zlasti v slovenskem jeziku. Opravljena je bila kvalitativna evalvacija štirih ogrodij za obdelavo naravnega jezika (SpaCy, SpaCy SLO, Flair, NLTK), ki so bile preizkušene na vzorcu petih dejanskih gradbenih dokumentov in primerjane z ročno anotiranimi referenčnimi podatki. V evalvacijo je bila vključena tudi anonimizacija z VJM, ki je občutljive podatke zakrival z uporabo regularnih izrazov. Rezultati kažejo, da je osnovna anonimizacija sicer mogoča, vendar vsa klasična ogrodja NER slabše prepoznavajo entitete specifične za področje, kot so projektne šifre, inženirski nazivi ter strukturirani šte vilčni podatki. Ugotovitve kažejo na potrebe po prilagojenih orodjih za predobdelavo, saj netočna anonimizacija predstavlja pravna in etična tveganja pri vključevanju VJM v regulirane panoge, kot je gradbeništvo. Prihodnje raziskave se morajo osredotočiti na gradnjo hibridnih anonimizacijskih tokov in učenje modelov na anotiranih podatkih, da bi izboljšali natančnost in skladnost v tehničnih panogah.

Language:Slovenian
Keywords:veliki jezikovni modeli, zasebnost podatkov, prepoznavanje imenskih entitet, operativno gradbeništvo, predobdelava dokumentov
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FGG - Faculty of Civil and Geodetic Engineering
Publication status:Published
Publication version:Version of Record
Year:2025
Number of pages:Str. 210-219
Numbering:Letn. 74
PID:20.500.12556/RUL-177360 This link opens in a new window
UDC:004.434:004.8:624
ISSN on article:0017-2774
COBISS.SI-ID:262447363 This link opens in a new window
Publication date in RUL:22.12.2025
Views:46
Downloads:6
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Gradbeni vestnik : glasilo Zveze društev gradbenih inženirjev in tehnikov Slovenije
Shortened title:Gradb. vestn.
Publisher:Zveza društev gradbenih inženirjev in tehnikov Slovenije
ISSN:0017-2774
COBISS.SI-ID:859140 This link opens in a new window

Licences

License:CC BY-SA 4.0, Creative Commons Attribution-ShareAlike 4.0 International
Link:http://creativecommons.org/licenses/by-sa/4.0/
Description:This Creative Commons license is very similar to the regular Attribution license, but requires the release of all derivative works under this same license.

Secondary language

Language:English
Title:Data preprocessing to ensure security and privacy when using large language models in construction
Abstract:
This paper addresses the challenge of ensuring data privacy when using Large Language Models (LLMs) in Construction Management Workflows. It analyses how well existing Named Entity Recognition (NER) tools can identify and redact sensitive information in technical construction documents, particularly in the Slovenian language. A qualitative evaluation was performed with four NLP frameworks (SpaCy, SpaCy SLO, Flair, NLTK) applied to a sample of five real-world construction documents and compared with manually annotated baseline data. The evaluation also included anonymization with VJM, which masked sensitive data using regular expressions. The results show that while basic anonymisation is possible, all classical NER frameworks underperform in identifying domain-specific entities such as project codes, engineering titles and structured numerical data. These findings emphasise the urgent need for domain-adapted preprocessing tools, as inaccurate redaction po ses legal and ethical risks when integrating LLMs in regulated domains such as construction. Future work should focus on building hybrid redaction pipelines and training custom models on annotated corpora to improve accuracy and compliance in technical domains.

Keywords:large language models, data privacy, name entity recognition, construction management, document preprocessing

Projects

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P2-0210
Name:E-Gradbeništvo

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back