Details

Preučevanje interakcij med biološkimi učinkovinami in pomožnimi snovmi z uporabo spektroskopskih metod na osnovi magnetne resonance in simulacij molekulske dinamike
ID Lebar, Blaž (Author), ID Pajk, Stane (Mentor) More about this mentor... This link opens in a new window, ID Mravljak, Janez (Comentor)

.pdfPDF - Presentation file, Download (36,50 MB)
MD5: 17B917FD2679873BCB70C63A27300420

Abstract
Razvoj formulacije biofarmacevtskih izdelkov je preko natančnega izbora pomožnih snovi namenjen med drugim temu, da odpravi ali minimizira kemične nestabilnosti, poveča konformacijsko stabilnost in koloidno stabilnost proteinov ter optimizira medfazno nestabilnost. Proteini, v našem primeru monoklonska protitelesa, so lahko podvrženi kompleksnim razgradnim potem ter spremembam ne le primarnih, temveč tudi višjih struktur. Področje pomožnih snovi obsega pufre, stabilizatorje, soli, antioksidante ter površinsko aktivne snovi. Izbor le-teh v biofarmacevtskem razvoju je v preteklosti temeljil na sistematskem preizkušanju in ugotavljanju nekompatibilnosti, vendar pa v zadnjem času nastaja potreba po vedno bolj racionalnih pristopih, ki so v kompetitivnem okolju s svojo učinkovitostjo še kako zaželeni. V okviru doktorskega dela smo identificirali alternativne pufrne sisteme, ki lahko v razvoju predstavljajo možnosti, ki so enako dobre, če ne celo boljše od konvencionalno uporabljenih pufrov. Njihovo učinkovitost smo dokazali pri priporočenih, pospešenih in stresnih pogojih shranjevanja, drugih oblikah stresa (tudi svetlobnem stresu in stresu zamrzovanja/odtaljevanja) ter pri nizki in visoki koncentraciji proteina. Preučili smo interakcije med pomožnimi snovmi in monoklonskimi protitelesi kot enega izmed predlaganih stabilizacjskih mehanizmov. Uporabili smo metode 1D in 2D jedrske magnetne resonance (NMR) ter simulacije molekulske dinamike (MD). Da bi zagotovili ustrezno ločljivost meritev NMR smo modelno monoklonsko protitelo razcepili na Fab in Fc domeni s cisteinsko proteazo IgdE, ter fragmenta očistili s pomočjo preparativne afinitetne kromatgrafije (ALC) in velikostno izključitvene kromatografije (SEC). Nestabilnost Fc fragmenta smo naslovili z uporabo konvencionalnih pufrov in stabilizatorjev, ter podprli s simulacijami MD. Amidne in metilne prstne odtise, pridobljene z metodami 2D NMR, smo dodatno podkrepili s kemometričnimi metodami analize glavnih komponent (PCA) ter kombiniranim odstopanjem kemijskega premika (CCSD), in s tem pokazali, da so metode dovolj občutljive za identifikacijo interakcij ne le s pufri, temveč tudi polisorbati. Interakcije s polisorbati so predstavljale večji izziv, predvidoma zaradi šibkosti interakcije, zaradi česar smo se zatekli k sintezi spinsko označenega polisorbata (SLPS), ki je strukturno zelo podoben polisorbatu (PS) 80 in 20, običajno uporabljenima površinsko aktivnima snovema v biofarmacevtiki. Interakcija med PS80 in modelnim mAb je bila predpostavljena kot verjetna zaradi zaščitnega učinka pred kemično hidrolizo surfaktanta, ki smo ga opazili v njuni koformulaciji. SLPS nam je omogočal tudi uporabo metode elektronske paramagnetne resonance (EPR) ter učinka ojačitve paramagnetne relaksacije (PRE) pri meritvah NMR. Z obema metodama smo pokazali, da SLPS tvori interakcijo z modelnim mAb ter da je interakcija zares šibka, saj smo interakcijo v primeru meritev EPR opazili le ob dodatku saharoze, s čimer smo povečai viskoznost raztopine. Naše izsledke smo podkrepili s simulacijami MD in pokazali, da gre najverjetneje za hidrofobno interakcijo v pregibni regiji mAb, na kar nakazujejo tudi naši podatki stabilnosti PS v prisotnosti fragmentov. Nazadnje smo okarakterizirali še kemijsko hidrolizo PS80 v histidinskem in acetatnem pufru, predlagali mehanizem razgradnje ter pokazali, da plastična primarna ovojnina močno vpliva na razpad. Rezultate smo podprli z metodo PCA. Naši izsledki postavljajo nov kamenček v mozaik razumevanja stabilizacijskih in razpadnih procesov v bioloških formulacijah in predstavljajo nov korak v smer racionalnega razvoja bioloških formulacij.

Language:Slovenian
Keywords:Biološka zdravila, razvoj formulacij, interakcije, pufri, polisorbati, razgradnja, jedrska magnetna resonanca, elektronska paramagnetna resonanca, molekulska dinamika, analiza glavnih komponent.
Work type:Doctoral dissertation
Organization:FFA - Faculty of Pharmacy
Year:2025
PID:20.500.12556/RUL-177352 This link opens in a new window
Publication date in RUL:21.12.2025
Views:69
Downloads:9
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Study of interactions between biologic drugs and excipients using magnetic resonance spectroscopy and molecular dynamics simulations
Abstract:
The formulation of biopharmaceutical products is aimed, among other things, at eliminating or minimizing chemical instabilities, increasing the conformational and colloidal stability of proteins, and optimizing interfacial instability through the precise selection of excipients. Proteins, in our case monoclonal antibodies, can undergo complex degradation pathways and changes not only in primary but also in higher order structures. The field of excipients includes buffer substances, stabilizers, salts, antioxidants, and surfactants. In the past, the selection of these excipients in biopharmaceutical development relied on systematic testing and compatibility determination. However, in recent times, there is an increasing need for more rational approaches, which are highly desirable in a competitive environment due to their efficiency. In the scope of my doctoral work, we identified alternative buffer systems that can present equally good, if not better, options in development compared to conventionally used buffers. We have demonstrated their effectiveness under recommended, accelerated, and stress storage conditions, other forms of stress (including light stress and freeze/thaw stress), as well as at low and high protein concentrations. We investigated the interactions between excipients and monoclonal antibodies as one of the proposed stabilization mechanisms. We employed 1D and 2D nuclear magnetic resonance (NMR) methods and molecular dynamics (MD) simulations. To ensure appropriate resolution of NMR measurements, we cleaved the model monoclonal antibody into Fab and Fc domains using the cysteine protease IgdE and purified the fragments using preparative affinity (ALC) and size exclusion (SEC) chromatography. We addressed the instability of the Fc fragment using conventional buffers and stabilizers, supported by MD simulations. The amide and methyl fingerprints obtained with 2D NMR methods were further supported by chemometric methods of principal component analysis (PCA) and combined chemical shift deviation (CCSD), showing that these methods are sensitive enough to identify interactions not only with buffers but also with polysorbates. The latter posed a greater challenge, presumably due to the weakness of the interaction, leading us to synthesize spin-labelled polysorbate (SLPS), which is structurally very similar to PS80 and PS20, commonly used surfactants in biopharmaceuticals. The interaction between PS80 and the model mAb was hypothesized to be likely due to the protective effect against the chemical hydrolysis of the surfactant observed in their coformulation. SLPS also allowed us to use the electron paramagnetic resonance (EPR) method and the effect of paramagnetic relaxation enhancement (PRE) in NMR measurements. Through both, we demonstrated that SLPS interacts with the model mAb and that the interaction is indeed weak, necessitating increased solution viscosity for the interaction to be detectable in EPR. Our findings were supported by MD simulations, indicating that the interaction is most likely hydrophobic in the hinge region of the mAb, as suggested by our stability data of PS in the presence of fragments. Lastly, we characterized the chemical hydrolysis of PS80 in histidine and acetate buffer, proposed a degradation mechanism, and showed that the plastic primary packaging significantly affects the breakdown. The results were supported by PCA. Our findings add a new piece to the mosaic of understanding stabilization and degradation processes in biological formulations, representing a new step towards rational development of biological formulations.

Keywords:Biological drugs, formulation development, interactions, buffers, polysorbates, degradation, nuclear magnetic resonance, electron paramagnetic resonance, molecular dynamics, principal component analysis.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back