Details

Aproksimacijski algoritmi za obdelavo podatkov hankelovega tipa
ID Dudić, Veljko (Author), ID Zalar, Aljaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,84 MB)
MD5: B83DFF325E27373F0606B4E6CA53A3B7

Abstract
V nalogi obravnavamo problem odstranjevanja šuma in zapolnjevanja manjkajočih vrednosti v časovnih vrstah in večrazsežnih seizmičnih podatkih z uporabo hankelovih nizkorangovnih pristopov. Teoretično predstavimo okvir strukturirane aproksimacije nizkega ranga in algoritme HLR, MSSA, dušeni MSSA (dMSSA) ter uteženi (Q,R). Zgradimo enoten eksperimentalni protokol z RMSE in SNR kot merama uspešnosti ter algoritme primerjamo na sintetičnih 1D signalih in 5D seizmičnih podatkih. Posebej analiziramo 5D dMSSA in pokažemo, da pri visokih ravneh šuma in nizkem deležu vzorčenja dosledno dosega višji SNR kot klasični MSSA. Na realnem nizu Australian wines vse metode uspešno rekonstruirajo odstranjene podatke in potrdijo uporabnost hankelovih nizkorangovnih pristopov v praktičnih situacijah.

Language:Slovenian
Keywords:hankelova aproksimacija nizkega ranga, strukturirana aproksimacija nizkega ranga, večkanalna singularna spektralna analiza (MSSA), dušeni MSSA, rekonstrukcija signalov in časovnih vrst, odstranjevanje šuma, seizmični podatki, manjkajoče vrednosti.
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-177283 This link opens in a new window
COBISS.SI-ID:263014403 This link opens in a new window
Publication date in RUL:19.12.2025
Views:81
Downloads:17
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Hankel Low-Rank Approximation for Data Analysis
Abstract:
This thesis addresses the problem of denoising and imputing missing values in time series and multidimensional seismic data by means of Hankel low-rank methods. We present the theoretical framework of structured low-rank approximation and study the algorithms HLR, MSSA, damped MSSA (dMSSA) and the weighted (Q,R)-norm approach. A unified experimental protocol is developed, using RMSE and SNR as performance measures, which enables a fair comparison of the methods on synthetic 1D signals and 5D seismic data. Particular attention is devoted to the 5D dMSSA algorithm, where we show that, for high noise levels and low sampling ratios, it consistently attains higher SNR than classical MSSA. On the real-world \emph{Australian wines} time series, all considered methods successfully reconstruct removed months and confirm the practical usefulness of Hankel low-rank techniques for signal reconstruction and noise reduction in realistic settings.

Keywords:Hankel low-rank approximation, structured low-rank approximation, Multichannel Singular Spectrum Analysis (MSSA), damped MSSA, signal and time-series reconstruction, denoising, seismic data, missing values.

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back