Details

Matematično modeliranje Youngovega modula in natezne trdnosti alginatnih hidrogelov s TEMPO oksidirano celulozo
ID Vidergar, Jan (Author), ID Kopač, Tilen (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (3,06 MB)
MD5: 082D74C46C099116ED03D1CD1C3A89DA

Abstract
Magistrsko delo obravnava mehanske lastnosti hidrogelov na osnovi alginata in TEMPO-oksidirane nanoceluloze (TONCF) ter njihov matematični opis. Namen raziskave je bil eksperimentalno ovrednotiti vpliv sestave na elastičnost, natezno trdnost in mrežno arhitekturo kompozitov ter razviti modele za napoved mehanskega odziva glede na razmerje sestavin. Pripravljeni so bili vzorci z različno koncentracijo alginata (5–10 ut%) in deleži TONCF (0–100 %), pri konstantni koncentraciji CaCl₂ in TONCF (3 %). Mehanske lastnosti so bile določene z nateznimi preizkusi. Rezultati so pokazali, da imajo kompoziti ojačevalen učinek na mehanske lastnosti: tako Youngov modul kot natezna trdnost presegata vrednosti posameznih komponent. Youngov modul doseže maksimum pri 75 % TONCF, medtem ko natezna trdnost doseže vrh pri 25 % TONCF, kar potrjuje nelinearno in lastnostim specifično vedenje mešanic. Za napoved mehanskih lastnosti so bili razviti trije pristopi. Random Forest model je izkazal najvišjo natančnost z R² = 0,9838 (Youngov modul) in R² = 0,9888 (natezna trdnost), vendar brez možnosti interpretacije in ekstrapolacije. Ekstrapolacijski model omogoča napoved tudi za sestave izven eksperimentalnega območja (za alginat), z nekoliko nižjo natančnostjo (R² ≈ 0,91–0,94). Tretji, semiempirični model, kateri temelji na perkolacijski teoriji, omogoča fizikalno utemeljeno interpretacijo opaženih pojavov ter razlago sprememb v gostoti mreže in medverižnih interakcijah. Delo dokazuje, da je s kombinacijo eksperimenta in modeliranja mogoče učinkovito opisati in napovedati mehanske lastnosti alginatno-celuloznih hidrogelov ter razumeti mehanizme ojačanja, kar predstavlja pomembno izhodišče za nadaljnji razvoj funkcionalnih mehkih materialov.

Language:Slovenian
Keywords:hidrogel, alginat, TEMPO-oksidirana celuloza, mehanske lastnosti, modeliranje
Work type:Master's thesis/paper
Organization:FKKT - Faculty of Chemistry and Chemical Technology
Year:2025
PID:20.500.12556/RUL-177281 This link opens in a new window
Publication date in RUL:19.12.2025
Views:45
Downloads:8
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Mathematical modeling of the Young’s modulus and tensile strength of alginate hydrogels with TEMPO oxidized cellulose
Abstract:
This master's thesis investigates the mechanical properties of hydrogels based on alginate and TEMPO-oxidized nanocellulose (TONCF), along with their mathematical modeling. The aim of the research was to experimentally evaluate the effect of composition on elasticity, tensile strength, and network architecture of the composites, and to develop predictive models for mechanical response based on component ratios. Samples were prepared with varying alginate concentrations (5–10 wt%) and TONCF fractions (0–100%) at a constant CaCl₂ and TONCF concentration (3%). Mechanical properties were assessed through tensile testing. The results demonstrated that the composites exhibit reinforcing effects on mechanical properties: both Young’s modulus and tensile strength surpassed the values of the individual components. Young’s modulus peaked at 75% TONCF, while tensile strength reached a maximum at 25% TONCF, confirming non-linear and property-specific behavior of the mixtures. Three modeling approaches were developed to predict mechanical properties. The Random Forest model showed the highest accuracy, with R² = 0.9838 (Young’s modulus) and R² = 0.9888 (tensile strength), though it lacks interpretability and extrapolation capability. The extrapolation model enables prediction beyond the experimental composition range (for alginate), with slightly lower accuracy (R² ≈ 0.91–0.94). The third, semi-empirical model, based on percolation theory, offers a physically grounded interpretation of observed phenomena and explains changes in network density and interchain interactions. The study demonstrates that combining experimental data with modeling enables effective prediction and explanation of the mechanical behavior of alginate–cellulose hydrogels, providing a solid foundation for further development of functional soft materials.

Keywords:hydrogel, alginate, TEMPO-oxidized cellulose, mechanical properties, modeling

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back