Details

On the sumsets of exceptional units in quaternion rings
ID Cheraghpour, Hassan (Author), ID Dolžan, David (Author)

.pdfPDF - Presentation file, Download (221,05 KB)
MD5: 03461C489E185E34BF339146649D273C
URLURL - Source URL, Visit https://doiserbia.nb.rs/Article.aspx?ID=0354-51802504301C This link opens in a new window

Abstract
We investigate sums of exceptional units in a quaternion ring $H(R)$ over a finite commutative ring $R$‎. ‎We prove that in order to find the number of representations of an element in $H(R)$ as a sum of ▫$k$▫ exceptional units for some integer $k \geq 2$‎, ‎we can limit ourselves to studying the quaternion rings over local rings‎. ‎For a local ring $R$ of even order‎, ‎we find the number of representations of an element of $H(R)$ as a sum of $k$ exceptional units for any integer $k \geq 2$‎. ‎For a local ring $R$ of odd order‎, ‎we find either the number or the bounds for the number of representations of an element of $H(R)$ as a sum of $2$ exceptional units‎.

Language:English
Keywords:exceptional units, finite rings, quaternion rings
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FMF - Faculty of Mathematics and Physics
Publication status:Published
Publication version:Version of Record
Publication date:01.01.2025
Year:2025
Number of pages:Str. 1301-1310
Numbering:Vol. 39, no. 4
PID:20.500.12556/RUL-176922 This link opens in a new window
UDC:512
ISSN on article:0354-5180
DOI:10.2298/FIL2504301C This link opens in a new window
COBISS.SI-ID:229008387 This link opens in a new window
Publication date in RUL:15.12.2025
Views:48
Downloads:4
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Filomat
Shortened title:Filomat
Publisher:Department of Mathematics and Informatics, Faculty of Science and Mathematics, University of Niš
ISSN:0354-5180
COBISS.SI-ID:1024191828 This link opens in a new window

Secondary language

Language:Slovenian
Keywords:izjemne enote, končni kolobarji, kvaternionski kolobarji

Projects

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0210
Name:Uporaba grafov v problemih ohranjevalcev

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0222
Name:Algebra, teorija operatorjev in finančna matematika

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back