Details

Faktorski modeli in optimizacija portfeljev : magistrsko delo
ID Nolimal, Matevž (Author), ID Košir, Tomaž (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (9,28 MB)
MD5: B26B0633EBC1EA5B179E379D8C181029

Abstract
Delo obravnava faktorske modele in različne pristope k ocenjevanju kovariančnih matrik kot temeljna orodja pri optimizaciji portfeljev in obvladovanju tveganj. V teoretičnem delu so sistematično predstavljeni enofaktorski, večfaktorski in temeljni faktorski modeli, s posebnim poudarkom na modelu Barra in njegovi sposobnosti segmentacije portfeljev na osnovi stilskih, industrijskih in državnih faktorjev. Takšen pregled vzpostavi metodološko podlago za nadaljnje empirične analize ter omogoča kritično vrednotenje učinkovitosti različnih modelov v realnih tržnih razmerah. Osrednji del analitičnega dela podrobno primerja klasične metode ocenjevanja kovariančnih matrik (zgodovinska kovariančna matrika, eksponentno tehtano drseče povprečje) z naprednimi pristopi, ki temeljijo na teoriji slučajnih matrik. Med slednjimi so podrobno analizirane metode skrčitve, prireza lastnih vrednosti, rotacijsko invariantne cenilke in metode čiščenja s potenčno porazdelitvijo. Izkazalo se je, da so ti pristopi praviloma učinkovitejši pri ločevanju signala od šuma v finančnih podatkih, kar pomembno zmanjšuje napake pri optimizaciji portfeljev. Primerjava metod tako osvetli njihove relativne prednosti in slabosti ter pokaže, v katerih pogojih se posamezne tehnike izkažejo kot zanesljivejše. Delo vključuje tudi praktično uporabo prilagojenega faktorskega modela, ki omogoča podrobno razčlenitev tveganja na sistemske in idiosinkratične komponente ter identifikacijo dejavnikov, ki najbolj vplivajo na uspešnost optimiziranih portfeljev. Ugotovitve potrjujejo, da kombinacija faktorskih modelov z naprednimi metodami ocenjevanja kovariančnih matrik vodi do robustnejših in bolj transparentnih strategij, ki dosegajo ugodnejše razmerje med donosom in tveganjem.

Language:Slovenian
Keywords:faktorski modeli, teorija slučajnih matrik, optimizacija portfeljev, kovariančna matrika
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FMF - Faculty of Mathematics and Physics
Year:2025
PID:20.500.12556/RUL-176870 This link opens in a new window
COBISS.SI-ID:260636931 This link opens in a new window
Publication date in RUL:12.12.2025
Views:45
Downloads:9
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Factor models and portfolio optimization
Abstract:
The thesis addresses factor models and different approaches to the estimation of covariance matrices as fundamental tools in portfolio optimization and risk management. In the theoretical part, single-factor, multi-factor, and fundamental factor models are systematically presented, with special emphasis on the Barra model and its ability to segment portfolios based on style, industry, and country factors. Such an overview establishes a methodological basis for further empirical analyses and enables a critical evaluation of the effectiveness of different models in real market conditions.  The central part of the analytical work provides a detailed comparison of classical methods for estimating covariance matrices (the historical covariance matrix, exponentially weighted moving average) with advanced approaches based on random matrix theory. Among the latter, shrinkage methods, eigenvalue clipping, rotationally invariant estimators, and power-law cleaning methods are analyzed in detail. It has been shown that these approaches are generally more effective in separating signal from noise in financial data, which significantly reduces errors in portfolio optimization. The comparison of methods thus highlights their relative strengths and weaknesses and shows under which conditions particular techniques prove to be more reliable. The thesis also includes the practical application of an adjusted factor model, which enables a detailed decomposition of risk into systematic and idiosyncratic components and the identification of factors that most influence the performance of optimized portfolios. The findings confirm that the combination of factor models with advanced methods of covariance matrix estimation leads to more robust and more transparent strategies that achieve a favorable risk-return profile.

Keywords:factor models, random matrix theory, portfolio optimization, covariance matrix

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back