Details

Deidentifikacija slik celotnega telesa z generativnimi modeli
ID Pristavnik Vrešnjak, Matic (Author), ID Meden, Blaž (Mentor) More about this mentor... This link opens in a new window, ID Emeršič, Žiga (Comentor)

.pdfPDF - Presentation file, Download (4,11 MB)
MD5: 5EA918773E1023E0D1E69262FBBB3E3D

Abstract
V današnjem času so slikovni biometrični podatki vedno pomembnejši, saj se uporabljajo za različne namene (npr. izdelava statistik, učenje modelov ipd.). Težava nastane pri njihovi uporabi, saj veliko podatkov vsebuje identiteto ali osebne podatke posameznikov. Zato so nastali različni zakoni (GDPR), ki sicer ščitijo uporabnikove podatke, a hkrati omejujejo njihovo uporabo. V tem delu predlagamo cevovod za zakrivanje identitete celotnega telesa, ki s pomočjo segmentacijskih mask in različnih generatorjev zamenja telesa na sliki. Pokazali smo, da naš cevovod učinkoviteje prekrije identiteto kot obstoječi pristopi, obenem pa ohrani kakovost slike.

Language:Slovenian
Keywords:Slikovna biometrija, računalniški vid, deidentifikacija, semantična segmentacija, generativni modeli, anonimnost, difuzijski modeli
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-176480 This link opens in a new window
COBISS.SI-ID:259950339 This link opens in a new window
Publication date in RUL:02.12.2025
Views:73
Downloads:7
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Full body image deidentification with generative models
Abstract:
In today’s world, visual biometric data is becoming increasingly important, as they are used for various purposes such as generating statistics and training models. However, a major challenge arises because many of these datasets contain identifiable information or personal attributes of individuals. Consequently, regulations such as the GDPR have been established to protect user data, though they also restrict their use. In this work, we propose a body anonymization pipeline that leverages segmentation masks and generative models to replace human bodies in images, thereby concealing individual identities. We show that our pipeline more effectively obscures identities than existing methods while maintaining high image quality.

Keywords:Image biometrics, computer vision, deidentification, semantic segmentation, generative models, anonymity, diffusion models

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back