Details

Uporaba velikih jezikovnih modelov za optimizacijo priprave ponudb v gradbeništvu : magistrsko delo
ID Krvina, Žiga (Author), ID Klinc, Robert (Mentor) More about this mentor... This link opens in a new window, ID Brelih, Anja (Comentor)

.pdfPDF - Presentation file, Download (3,13 MB)
MD5: EE49773CBC0427B87E863107C09BB6B4

Abstract
Magistrska naloga obravnava uporabo umetne inteligence pri optimizaciji procesa priprave ponudb v podjetju, ki deluje na področju geotehničnih raziskav. Namen raziskave je bil preveriti, ali lahko veliki jezikovni modeli, kot so GPT, Claude in QwQ, učinkovito podprejo inženirje pri pripravi ponudb pri izbiri ustreznih postavk in količin ter s tem zmanjšajo čas in napake v postopku. Naloga vključuje teoretični pregled arhitekture sodobnih modelov in postopkov prilagajanja modelov. V praktičnem delu je bil izveden postopek prilagajanja modela QwQ 32B v okolju Google Colab z uporabo domenskih podatkov in učnih parov podatkov. Model je bil preizkušen na 120 povpraševanjih ter primerjan z izbranimi komercialnimi rešitvami podjetij OpenAI in Anthropic. Rezultati so pokazali, da odprtokodni prilagojeni modeli ne dosegajo natančnosti naprednejših komercialnih sistemov ter zaostajajo pri stabilnosti in hitrosti delovanja. Najuspešnejši je bil model Claude Sonnet 4.5, ki je zagotavljal uravnoteženost med natančnostjo in odzivnim časom. Implementacija modela v programsko rešitev podjetja je pokazala, da se čas priprave ponudbe lahko zmanjša ob hkratnem povečanju konsistentnosti dokumentov. Naloga potrjuje potencial umetne inteligence za avtomatizacijo ponavljajočih se nalog v inženirski praksi ter opozarja na omejitve, povezane z varovanjem podatkov, kakovostjo učnih podatkov in potrebo po človeškem nadzoru nad rezultati.

Language:Slovenian
Keywords:magistrska dela, gradbeništvo, umetna inteligenca, veliki jezikovni modeli, strojno učenje, prilagajanje modela, optimizacija poslovnih procesov, geotehnične raziskave
Work type:Master's thesis/paper
Typology:2.09 - Master's Thesis
Organization:FGG - Faculty of Civil and Geodetic Engineering
Place of publishing:Ljubljana
Publisher:[Ž. Krvina]
Year:2025
Number of pages:1 spletni vir (1 datotek PDF (X, 56 str., [4] str. pril.))
PID:20.500.12556/RUL-176411 This link opens in a new window
UDC:004.85:69(043.2)
COBISS.SI-ID:259716611 This link opens in a new window
Publication date in RUL:29.11.2025
Views:172
Downloads:41
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Use of large language models for optimizing quotation preparation in construction : master thesis
Abstract:
The master's thesis examines the use of artificial intelligence for optimizing the process of quote preparation in a company operating in the field of geotechnical investigations. The aim of the research was to determine whether large language models, such as GPT, Claude, and QwQ, can effectively support quotation preparers in selecting appropriate items and quantities, thereby reducing time and errors in the process. The thesis includes a theoretical overview of the architecture of modern models and fine-tuning methods. In the practical part, a QwQ 32B model was fine-tuned in the Google Colab environment using domain-specific data and input/output data pairs. The model was tested on 120 inquiries and compared with selected commercial solutions provided by OpenAI and Anthropic. The results showed that locally fine-tuned models do not achieve the accuracy of advanced commercial systems and lag behind in terms of stability and processing speed. The most successful was the Claude Sonnet 4.5 model, which demonstrated a balanced performance in terms of accuracy, interpretability, and response time. The implementation of the selected model into the company’s software solution indicated that the time required for bid preparation can be reduced while simultaneously improving document consistency. The thesis confirms the potential of artificial intelligence for automating repetitive tasks in engineering practice while highlighting limitations related to data protection, the quality of training datasets, and the need for human oversight of the results.

Keywords:master thesis, civil engineering, artificial intelligence, large language models, machine learning, fine-tuning, business process optimization, geotechnical investigations

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back