Details

Odkrivanje vzorcev iz velike množice nogometnih podatkov
ID Zakšek, Luka (Author), ID Guid, Matej (Mentor) More about this mentor... This link opens in a new window

.pdfPDF - Presentation file, Download (5,81 MB)
MD5: BF9E1734AB06B45377EE4CED74CF046E

Abstract
Iskanje podobnih nogometnih posesti poteka z ogledom videoposnetkov tekem, kar je za nogometnega analitika časovno potratno. Poleg tega prihaja do nekonsistentnosti zaradi človeške subjektivnosti. V magistrskem delu smo zasnovali, implementirali in predstavili rešitev za samodejno iskanje podobnih nogometnih posesti z uporabo metod informacijskega poizvedovanja. Po algoritmični predobdelavi se zaporedja dogodkov združijo v posesti in pretvorijo v besedilne dokumente, ki se nato indeksirajo. Shemo dokumentov in indeksa ter morebitno uteževanje atributov določi domenski ekspert, sistem pa podpira filtriranje, različne tipe poizvedb in izpis kontekstualnih metapodatkov. Razvita rešitev tako omogoča hitro in natančno iskanje taktično podobnih posesti brez potrebe po časovno potratnem ročnem označevanju ali kompleksnem nadzorovanem učenju. Evalvacija na podatkih slovenske Prve lige je pokazala visoko učinkovitost in kratek odzivni čas, pristop pa je skalabilen. Razvita rešitev nogometnim analitikom omogoča hitrejše in objektivnejše prepoznavanje vzorcev igre ter predstavlja prispevek k podatkovno podprti športni analitiki.

Language:Slovenian
Keywords:informacijsko poizvedovanje, nogomet, iskanje podobnih nogometnih posesti
Work type:Master's thesis
Typology:2.09 - Master's Thesis
Organization:FRI - Faculty of Computer and Information Science
Year:2025
PID:20.500.12556/RUL-176309 This link opens in a new window
COBISS.SI-ID:259877891 This link opens in a new window
Publication date in RUL:27.11.2025
Views:128
Downloads:36
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Secondary language

Language:English
Title:Detecting patterns from big data in football
Abstract:
Searching for similar football possessions is typically carried out by reviewing match videos by a football analyst, which is time-consuming and prone to inconsistencies caused by human subjectivity. In this master's thesis, we designed, implemented, and presented a solution for automatically searching for similar football possessions using information retrieval methods. After algorithmic preprocessing, sequences of events are combined into possessions and converted into text documents, which are then indexed. A domain expert determines the document and index schema, as well as possible attribute weighting. The system supports filtering, various types of queries, and the display of contextual metadata. The developed solution thus enables fast and accurate searches for tactically similar possessions without the need for time-consuming manual labelling or complex supervised learning. Evaluation on data from the Slovenian First League demonstrated high efficiency and short response times, and the approach is scalable. The developed solution enables football analysts to recognise game patterns more quickly and objectively, representing a contribution to data-driven sports analytics.

Keywords:information retrieval, football, retrieving similar football posessions

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back