Details

A parallel-plate electrochemical microreactor for the continuous production of hydrogen peroxide
ID Apostolova, Desislava (Author), ID Bardarov, Ivo (Author), ID Tjell, Anders Ø. (Author), ID Gričar, Ema (Author), ID Starin, Mark (Author), ID Farinazzo Bergamo Dias Martins, Pedro (Author), ID Nosan, Miha (Author), ID Mayr, T. (Author), ID Strmčnik, Dušan (Author), ID Plazl, Igor (Author), ID Genorio, Boštjan (Author)

.pdfPDF - Presentation file, Download (5,18 MB)
MD5: E533C715F21D0F996931A919E78D43F2
URLURL - Source URL, Visit https://www.sciencedirect.com/science/article/pii/S1385894725111455 This link opens in a new window

Abstract
This study presents a comprehensive evaluation of a microfluidic electrochemical system for the controlled generation and detection of hydrogen peroxide (H$_2$O$_2$). The integrated microreactor with a three-electrode configuration in combination with optical sensors enabled real-time monitoring of dissolved oxygen and H$_2$O$_2$ concentrations during chronoamperometric operation. Glassy carbon (GC) electrodes exhibited high selectivity toward the two-electron oxygen reduction reaction (2e$^−$ ORR), a key requirement for efficient H$_2$O$_2$ electrosynthesis. Cyclic voltammetry (CV), rotating ring-disk electrode (RRDE) analyses and electrochemical testing in real system identified 0.4 V vs. RHE as the optimal working potential. Flow rate experiments revealed a decline in H$_2$O$_2$ production with increasing flow rates, consistent with electrical charge measurements and oxygen consumption data. A mathematical model, validated with experimental data, reliably predicted H$_2$O$_2$ outlet concentration as a function of flow rate (residence time). The model captured the interplay between mass transport and surface electrocatalytic reactions and enabled the identification of an optimal operating window (25–50 μL min$^{−1}$), supporting model-based reaction optimization. Post-experiment surface characterization using SEM-EDS, XPS, and μ-FTIR revealed increased oxygen-containing functional groups on the GC working electrode, indicating surface oxidation that may enhance catalytic performance. Overall, this system offers a scalable, sustainable platform for on-demand H$_2$O$_2$ production, supporting cleaner, decentralized electrochemical synthesis with reduced environmental impact and greater adaptability for modern industrial applications.

Language:English
Keywords:electrosynthesis, hydrogen peroxide, two-electron oxygen reduction reaction, carbon electrocatalysts, electrochemical microreactor, continuous flow microreactor
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FKKT - Faculty of Chemistry and Chemical Technology
Publication status:Published
Publication version:Version of Record
Year:2025
Number of pages:11 str.
Numbering:Vol. 525, art. 170301
PID:20.500.12556/RUL-175775 This link opens in a new window
UDC:661.491.087
ISSN on article:1385-8947
DOI:10.1016/j.cej.2025.170301 This link opens in a new window
COBISS.SI-ID:256282115 This link opens in a new window
Publication date in RUL:07.11.2025
Views:127
Downloads:37
Metadata:XML DC-XML DC-RDF
:
Copy citation
Share:Bookmark and Share

Record is a part of a journal

Title:Chemical engineering journal
Shortened title:Chem. eng. j.
Publisher:Elsevier Sequoia
ISSN:1385-8947
COBISS.SI-ID:2110998 This link opens in a new window

Licences

License:CC BY-NC 4.0, Creative Commons Attribution-NonCommercial 4.0 International
Link:http://creativecommons.org/licenses/by-nc/4.0/
Description:A creative commons license that bans commercial use, but the users don’t have to license their derivative works on the same terms.

Secondary language

Language:Slovenian
Keywords:elektrosinteza, vodikov peroksid, dvoelektronska reakcija redukcije kisika, ogljikovi elektrokatalizatorji, elektrokemijski mikroreaktor, pretočni mikroreaktor

Projects

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P2-0423-2022
Name:Sodobni akumulatorji kot podpora zelenemu prehodu in elektromobilnosti

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0447-2024
Name:N-DAD - Neporušna analitika in diagnostika

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J7-4636-2022
Name:Temeljno razumevanje reakcije tvorbe vodika za novo generacijo elektrokatalizatorjev na osnovi niklja v alkalni in kloralkalni elektrolizi

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J2-50086-2023
Name:Nanofibrilarne celulozne membrane v mikrobnih gorivnih celicah: razvoj materialov za trajnostne aplikacije z visoko dodano vrednostjo

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J7-50227-2024
Name:Izboljšava učinkovitosti sistemov za pretvorbo in shranjevanje energije s pomočjo 2D modificiranih elektrokemijskih faznih mej

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J2-60044-2025
Name:Računalniško podprto okolje za sistematično sintezo, načrtovanje in vključevanje pretočne kemije in mikroprocesov v trajnostne proizvodne sisteme, ciljano na Moč-do-X

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:L2-3161-2021
Name:Procesna intenzifikacija kontinuirne sinteze vodikovega peroksida visoke čistosti z uporabo elektrokatalitskega mikroreaktorja

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N2-0298-2023
Name:Interakcije okoljsko relevantne mikroplastike in biotskih površin v vodnem okolju

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:I0-0022-2022
Name:Mreža raziskovalnih infrastrukturnih centrov Univerze v Ljubljani (MRIC UL)

Funder:EC - European Commission
Project number:101160108
Name:Twinning for Building Excellence and Innovative Solutions in Flow Catalysis
Acronym:FLOWCAT

Similar documents

Similar works from RUL:
Similar works from other Slovenian collections:

Back